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Abstract. The paper studies the numerical solution of the inverse problem for
a linearized two-dimensional system of Navier–Stokes equations in a circular cylinder
with a final overdetermination condition. For a biharmonic operator in a circle,
a generalized spectral problem has been posed. For the latter, a system of eigen-
functions and eigenvalues is constructed, which is used in the work for the numerical
solution of the inverse problem in a circular cylinder with specific numerical data.
Graphs illustrating the results of calculations are presented.
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1. INTRODUCTION

The theory of the Navier–Stokes equations attracts unrelenting interest and attention
not only from theoreticians but also from applied scientists. The literature on inverse
problems for the Navier–Stokes system of equations is quite extensive and numerous.
As is known, these equations describe the motion of a fluid, taking into account
its pressure, as well as many accompanying processes, such as thermal conductivity,
electromagnetic phenomena, etc. To date, although many qualitative issues of solutions
to initial boundary value problems have been studied, at the same time, a number of
open problems remain unresolved [13, 16, 24]. In the last three or four decades, inverse
problems for the system of Navier–Stokes equations have been actively studied. First
of all, we want to note a series of remarkable and, to a certain extent, pioneering works
devoted to the theory of inverse problems for several equations of mathematical physics
[20, 21, 28], including linearized and nonlinear Navier–Stokes equations, and which
are directly related to the subject of our work. One should also point to the works
[2,3,8–10,12,18,19,22], devoted to inverse problems for parabolic equations. Note that
various issues related to the solvability and approximate solution of inverse problems
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for partial differential equations, including for the two-dimensional Navier–Stokes
system, are considered in [4, 5, 14, 26, 27]. In [23], the spectral problem for the
Stokes operator is solved in the case of periodic boundary conditions (on a torus). We
also note the monograph [25] devoted to the general theory of ill-posed problems and
various questions about its connection with inverse problems.

In this work, in a circular cylinder, we consider an inverse problem for a linearized
two-dimensional system of Navier–Stokes equations with a final overdetermination
condition. The main purpose of our work is: to algorithmically implement the numerical
solution of the inverse problem, because it is known that such algorithms play an
important role in applied problems. We are solving a generalized spectral problem
for a biharmonic operator with Dirichlet conditions in a circular domain: we are
finding the eigenfunctions that make up the orthonormal basis in the space of solutions
of the Navier–Stokes equations, and their corresponding eigenvalues. For the numerical
solution of the inverse problem, we use an optimization method associated with
minimizing the discrepancy of the solution of the direct problem with the final
condition and based on the Pontryagin maximum principle [6, 17].

This paper is organized as follows. In Section 2, the formulation of an inverse
problem is given. In Section 3, using a stream function, we give a statement of the
generalized spectral problem for a biharmonic operator with Dirichlet conditions
corresponding to a two-dimensional linearized system of Navier–Stokes equations.
Section 4 is devoted to the solution of the spectral problem under consideration, in
which a system of eigenfunctions is constructed and the corresponding eigenvalues
are found. Section 5 contains the results of applying an optimization method based
on the optimality conditions of the Pontryagin maximum principle. An example of
a numerical solution to the inverse problem with specific numerical data is given in
Section 6. The results of the numerical solution in the form of graphs are also given
here.

In this paper, we restrict ourselves to considering only the linearized Navier–Stokes
model. As for the more complex inverse problem for the complete two-dimensional
nonlinear system of Navier–Stokes equations, we propose to devote a separate paper
to it. In this case, of course, we will actively use the results of the presented work,
especially those related to the generalized spectral problem for the biharmonic operator.

In the notation of spaces, we adhere to works [1, 16,24].

2. STATEMENT OF THE INVERSE PROBLEM

Let Ω = {|y| < 1} ⊂ R2 be an open bounded domain with boundary ∂Ω. We introduce
the notation of spaces V, H, L2(Ω), H1

0(Ω) and H2(Ω):

V = {v : v ∈ H1
0(Ω) =

(
H1

0 (Ω)
)2
, div v = 0},

H =
{
v : v ∈ L2(Ω), div v = 0

}
,

L2(Ω) =
(
L2(Ω)

)2
, H2(Ω) =

(
H2(Ω)

)2
.
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The following dense embeddings take place

V ⊂ H ≡ H′ ⊂ V′, H1
0(Ω) ⊂ L2(Ω) ≡

(
L2(Ω)

)′ ⊂ H−1(Ω),

and (·, ·) , ((·, ·)) are scalar products in spaces H, L2(Ω) and V, H1
0(Ω), respectively.

The Helmholtz decomposition of space L2(Ω): L2(Ω) = H ⊕ H⊥,

H⊥ is an orthogonal complement to H in the space L2(Ω),

H⊥ = {v : v ∈ L2(Ω), v = ∇u, u ∈ H1(Ω)},
(
H ⊕ H⊥)′ ≡

(
L2(Ω)

)′ ≡ L2(Ω) ≡ H ⊕ H⊥.

Further, let Qyt = Ω × (0, T ), Σyt = ∂Ω × (0, T ). The following inverse problem of
determining functions {w(y, t), P (y, t), f(y)} is considered:

∂tw − ν∆w = g(t)f(y) − ∇P, (y, t) ∈ Qyt, (2.1)

divw = 0, (y, t) ∈ Qyt, (2.2)
w(y, t) = 0, (y, t) ∈ Σyt, (2.3)
w(y, 0) = 0, y ∈ Ω, (2.4)

with overdetermination condition:

w(y, T )=wT (y), (2.5)

where g(t) = {g1(t), g2(t)} and wT (y) are given functions.
So, in the weak version of the problem (2.1)–(2.5), the vector function

w = (w1, w2) ∈ L2(0, T ; V ∩ H2(Ω)), the scalar functions P ∈ L2(0, T ; H1(Ω)),
g ∈ L2(0, T ) and the function f(y) = {f1(y), f2(y)} ∈ H are unknown.

Let us formulate the inverse problem: Disperse the liquid filling the domain Ω from
the initial state of rest, and described by (2.1)–(2.4), and bring it to the desired state
wT (y) ∈ V ∩ H2(Ω) (2.5) at time t = T.

3. GENERALIZED SPECTRAL PROBLEM FOR A BIHARMONIC OPERATOR
IN A CIRCLE

Further, without loss of generality, for simplicity, we take ν = 1. We transform
boundary value problem (2.1)–(2.4). For this purpose, in the domain Qyt, we introduce
the scalar stream function U(y, t), defined up to an additive constant, by the following
equations [16,24]:

∂y1U = −w2, ∂y2U = w1. (3.1)
Differentiating with respect to y2 the first equation and with respect to y1 the second

equation of system (2.1), and summing them taking into account (3.1), we obtain the
following equation for U(y, t):

−∂t∆U + ∆2U = G(y, t) ≡ −∂y2F1 + ∂y1F2, (y, t) ∈ Qyt, (3.2)
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with boundary and initial conditions

U = 0, ∂n⃗U = 0, (y, t) ∈ Σyt, (3.3)

U = 0, y ∈ Ω, t = 0, (3.4)

where Fj = gj(t)fj(y), j = 1, 2, and n⃗ is the unit vector of the outward normal to the
circle |y| = 1.

To solve problem (2.1)–(2.5) numerically, we must be able to approximately solve
boundary value problem (3.2)–(3.4). For this we will use the Faedo–Galerkin method,
which is provided by solving the following spectral problem:

∆2V (y) = µ2(−∆V (y)), y ∈ Ω = {|y| < 1}, (3.5)

∂n⃗V (y) = 0, at |y| = 1, (3.6)

V(y) = 0, at |y| = 1. (3.7)

4. SOLVING GENERALIZED SPECTRAL PROBLEM (3.5)–(3.7)

We rewrite equation (3.5) as a system for unknown functions {V (y) ,W (y)} :

−∆V (y) = W (y) , −∆W (y) = µ2W (y) , y ∈ Ω. (4.1)

So, we get spectral problem (4.1), (3.6) and (3.7). We write this problem
in the polar coordinate system {y1 = r cos θ, y2 = r sin θ} in the domain
Ω1 = {0 < r < 1, 0 ≤ θ < 2π}:

−1
r
∂r (r∂rZ (r, θ)) − 1

r2 ∂
2
θZ (r, θ) = Y (r, θ) , (r, θ) ∈ Ω1, (4.2)

−1
r
∂r (r∂rY (r, θ)) − 1

r2 ∂
2
θY (r, θ) = µ2Y (r, θ) , (r, θ) ∈ Ω1, (4.3)

Z(r, θ) is bounded in the neighborhood of the point r = 0, (4.4)

∂rZ (r, θ) = 0, at r = 1, (4.5)

Z(r, θ) = 0, at r = 1, (4.6)

where Z (r, θ) = V(r cos θ, r sin θ), Y (r, θ) = W(r cos θ, r sin θ).
Problem (4.2)–(4.6) will be solved by the method of separation of variables:

Z (r, θ) =
∑

j

RZj (r) ΘZj (θ) , Y (r, θ) =
∑

j

RY j (r) ΘY j (θ) . (4.7)

Substituting (4.7) into (4.2)–(4.6), we get

−Θ
′′

Zj (θ) = µ2
ZjΘZj (θ) , θ ∈ (0, 2π) , ΘZj (0) = ΘZj (2π) , (4.8)
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−Θ
′′

Y j (θ) = µ2
Y jΘY j (θ) , θ ∈ (0, 2π) , ΘY j (0) = ΘY j (2π) , (4.9)

r2R
′′
Zj (r) + rR ′

Zj (r) − µ2
ZjRZj (r) = −r2RY j (r) , (4.10)

r2R
′′
Y j (r) + rR ′

Y j (r) +
(
µ2r2 − µ

2
Y j

)
RY j (r) = 0, (4.11)

RZj (r) is bounded in a neighborhood of zero, (4.12)
RZj (1) = 0, R ′

Zj (1) = 0. (4.13)
The solutions of problems (4.8) and (4.9) coincide and are equal to:

Θ(−)
Z0 (θ) = Θ(−)

Y 0 (θ) = 1, θ ∈ [0, 2π),

Θ(−)
Zj (θ) = Θ(−)

Y j (θ) = cos jθ, Θ(+)
Zj (θ) = Θ(+)

Y j (θ) = sin jθ, θ ∈ [0, 2π),

µ2
Zj = µ2

Y j = j2, j ∈ {1, 2, . . .}. (4.14)

It is known that the equation (4.11) is a special case of the Bessel equation and its
general solution has the form RY j = C1Jj(µr) + C2J̃j(µr), where J̃j(µr) = J−j(−µr)
and Jj , j = 0, 1, 2, . . ., is the Bessel function of the first order. Due to the fact
that j = 1, 2, . . ., according to formulas (12)–(14) from [15, Chapter 7, §3] we have
J−j(−µr) ≡ Jj(µr) for all j = 1, 2, . . . Thus, it suffices for us to consider the system
of functions {J0(µr), Jj(µr), j = 1, 2, . . .}.

Further, if we make the substitution ρ = µr, then by the definition of a cylindrical
function for equation (4.11) the following statement is true.
Lemma 4.1. Equation (4.11) has a general solution in the form of a cylindrical
function RY j (r) = Jj(µr), j = 0, 1, 2, . . .

Substituting this solution from Lemma 4.1 into equation (4.10), we will have
a boundary value problem for an nonhomogeneous ordinary differential equation of
the second order:

r2R ′′
Zj(r) + rR ′

Zj(r) − j2RZj(r) = −r2Jj(µr), r ∈ (0, 1), (4.15)

RZj(r) are bounded in a neighborhood of zero, (4.16)
RZj(1) = 0, R ′

Zj(1) = 0, (4.17)
where j = 0, 1, 2, . . .

For boundary value problem (4.15)–(4.17), we establish the following lemma.
Lemma 4.2. For all j ∈ {0, 1, 2, . . .} boundary value problem (4.15)–(4.17) has
a countable family of solutions



RZjk(r) =

1∫

0

Gj(r, ρ)Jj(µj+1,kρ)dρ, µ2
j+1,k



 , k = 1, 2, . . . ,

where µj+1,k are roots of equations Jj+1(µ) = 0 and Gj , j = 0, 1, . . . is the suitable
Green function.
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Proof. We seek fundamental solutions for (4.15) in the form of Rjf.s. (r) = rm, where m
is an unknown number for now. Substituting rm into equation (4.15), we find m = ±j,
i.e. fundamental solutions are equal

z1j(r) = r−j , z2j(r) = rj for any j ∈ {1, 2, . . .}, z10(r) = ln r, z20(r) = 1. (4.18)

Thus, the general solution of homogeneous equation (4.15), according to (4.18),
is written in the form

Rjg.s.(r) = C1jr
−j + C2jr

j , j ∈ {1, 2, . . .}, R0g.s.(r) = C10 ln r + C20, (4.19)

from the boundedness conditions in the neighborhood of the point r= 0 from (4.16)
it follows that

C1j = 0, j = 0, 1, 2, . . . (4.20)

Thus, the general solutions for equation (4.15), obtained on the basis of fundamental
solutions (4.18)–(4.20) ([7, Chapter 1, §5]) and according to the first condition from
(4.17), have the form:

Rjg.s.(r) =
{
C2jr

j +Rjp.s.(r), j ̸= 0
C20 +R0p.s.(r), j = 0 =

1∫

0

Gj(r, ρ)Jj(µρ)dρ, j = 0, 1, . . . ,

(4.21)
where

Gj(r, ρ) =
{

− 1
2j r

j
[
ρj+1 − ρ−j+1]

, 0 < r < ρ < 1,
− 1

2j ρ
j+1 [

rj − r−j
]
, 0 < ρ < r < 1, j = 1, 2, . . . , (4.22)

G0 (r, ρ) =
{

−ρ lnρ, 0 < r < ρ < 1,
−ρ lnr, 0 < ρ < r < 1,

j = 0, (4.23)

C2j =





− 1
2j

1∫
0

[
ρj+1 − ρ−j+1]

Jj(µρ)dρ, j = 1, 2, . . . ,

−
1∫
0
ρ lnρ J0(µρ)dρ, j = 0.

(4.24)

Finally, for eigenfunctions RZj(r) from (4.21)–(4.24) we obtain:

RZj(r) =
1∫

0

Gj(r, ρ)Jj(µρ)dρ, j = 1, 2, . . . ,

RZ0(r) =
1∫

0

G0(r, ρ)J0(µρ)dρ.
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Further, from the second condition from (4.17) according to formula (20) from
[15, Chapter 7, §3] we obtain

R ′
Zj(1) = 0 ⇔





1∫
0
ρJ0(µρ)dρ = 0 ⇔ J1(µ) = 0,

1∫
0
ρj+1Jj(µρ)dρ = 0 ⇔ Jj+1(µ) = 0, j = 1, 2, . . .

We denote by µjk, k ∈ {1, 2, . . .}, the roots of equations Jj(µ) = 0, j ∈ {1, 2, . . .}. Thus
we get that the system of functions {Jj(µjkr), k = 1, 2, . . .} satisfies the orthogonality
condition with weight r, i.e.

1∫

0

Jj(µjkr)Jj(µjlr) r dr =
{

0, at k ̸= l,

d2
jk, at k = l,

where d2
jk =

1∫

0

J2
j (µjkr) r dr.

Thus the solutions to initial boundary value problem (4.15)–(4.17) have the follow-
ing form



RZjk(r) =

1∫

0

Gj(r, ρ)Jj(µj+1,kρ)dρ, µ2
j+1,k



 , j = 0, 1, 2, . . . , k = 1, 2, . . . , (4.25)

where µj+1,k are roots of equations Jj+1(µ) = 0.

Remark 4.3. We will assume that θ ∈ [0, 2π). We represent the interval [0, 2π) as
a union of sets

[0, π/2) ∪ (3π/2, 2π) ∪ (π/2, 3π/2) ∪ {π/2} ∪ {3π/2} . (4.26)

Then on the set (4.26) to define θ we get the following formula:

θ ∈





[0, π/2) , y1 > 0, y2 ≥ 0,
(3π/2, 2π) , y1 > 0, y2 < 0,
(π/2, 3π/2) , y1 < 0,
π/2, y1 = 0, y2 > 0,
3π/2, y1 = 0, y2 < 0.

(4.27)

Note that (4.27) takes into account the fact that an angle θ is determined using
function ãrctan

(
y2
y1

)
, taking into account the signs of coordinates y1, y2 and values of

arctan
(

y2
y1

)
. This function will be denoted by ãrctan

(
y2
y1

)
, i.e. θ = ãrctan

(
y2
y1

)
.
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Theorem 4.4. From solutions (4.14) and (4.25) of boundary value problems (4.8)–(4.9)
and (4.10)–(4.13), respectively, we obtain the following system of eigenfunctions and
the corresponding eigenvalues:

{
RZ0k(r), RZjk(r) cos jθ, RZjk(r) sin jθ, µ2

1k, µ
2
j+1,k

}
, j, k ∈ {1, 2, . . .} . (4.28)

In the Cartesian coordinate system, respectively, we obtain
{
U

(−)
jk (y) ≡ RZjk(|y|) cos

(
j ãrctan

(
y2
y1

))
,

U
(+)
jk (y) ≡ RZjk (|y|) sin

(
j ãrctan

(
y2
y1

))
, µ2

j+1,k

}
,

j ∈ {1, 2, . . .} , k ∈ {1, 2, 3, . . .}, |y| < 1,

(4.29)

{
U

(−)
0k (y) ≡ RZ0k(|y|), µ2

1k

}
, j = 0, k ∈ {1, 2, 3, . . .}, |y| < 1. (4.30)

Now, according to formulas (3.1) and (4.29)–(4.30) we define a system of eigen-
functions w(y) = {w1(y), w2(y)} for the weak form of the spectral problem (3.5)–(3.7),
which (it is not difficult to verify) is equivalent to the following:

a(w, v) = µ2(w, v), v ∈ V, (4.31)

where

a(w, v) = ((w, v)) ≡
2∑

i,j=1

∫

Ω

∂wj

∂yi

∂vj

∂yi
dy, w, v ∈ V.

Remark 4.5. Spectral problem (4.31) is posed for the self-adjoint Stokes operator.
Therefore, its solution, i.e. system of eigenfunctions, constitutes an orthogonal basis in
space V with real eigenvalues (see, for example, [24, Chapter 1, 2.6]).

Further, from Theorem 4.4 we finally get the following result.
Theorem 4.6. For all j ∈ {0, 1, 2, . . .} , k ∈ {1, 2, 3, . . .}, |y| < 1, the eigenfunctions

{
w

(−)
1jk (y) ≡ ∂y2U

(−)
jk (y) , w(−)

2jk (y) ≡ −∂y1U
(−)
jk (y)

}
, (4.32)

{
w

(+)
1jk (y) ≡ ∂y2U

(+)
jk (y) , w(+)

2jk (y) ≡ −∂y1U
(+)
jk (y)

}
, (4.33)

w
(−)
10k (y) ≡ ∂y2U

(−)
0k (y) = R ′

Z0k(|y|) y2
|y| , (4.34)

w
(−)
20k (y) ≡ −∂y1U

(−)
0k (y) = −R ′

Z0k (|y|) y1
|y| , (4.35)

in pairs constitute an orthogonal basis in space V, where

∂y2U
(−)
jk (y) = R ′

Zjk (|y|) y2
|y|cos

(
j ãrctan

(
y2
y1

))

−RZjk (|y|) sin
(
j ãrctan

(
y2
y1

))
j
y1

|y|2
,

(4.36)
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∂y2U
(+)
jk (y) = R ′

Zjk (|y|) y2
|y| sin

(
j ãrctan

(
y2
y1

))

+RZjk (|y|) cos
(
j ãrctan

(
y2
y1

))
j
y1

|y|2
,

(4.37)

−∂y1U
(−)
jk (y) = −R ′

Zjk (|y|) y1
|y|cos

(
j ãrctan

(
y2
y1

))

+RZjk (|y|) sin
(
j ãrctan

(
y2
y1

))
j
y2

|y|2
,

(4.38)

−∂y1U
(+)
jk (y) = −R ′

Zjk (|y|) y1
|y| sin

(
j ãrctan

(
y2
y1

))

−RZjk (|y|) cos
(
j ãrctan

(
y2
y1

))
j
y2

|y|2
,

(4.39)

R ′
Zjk (|y|) =

1∫

|y|

∂|y|Gj (|y|, ρ) Jj (µj+1,kρ) dρ

+
|y|∫

0

∂|y|Gj (|y| , ρ) Jj (µj+1,kρ) dρ,

(4.40)

RZjk (|y|) =
1∫

|y|

Gj (|y|, ρ) Jj (µj+1,kρ) dρ+
|y|∫

0

Gj (|y|, ρ) Jj (µj+1,kρ) dρ, (4.41)

R ′
Z0k (|y|) =

1∫

|y|

∂|y|G0 (|y|, ρ) J0 (µ1kρ) dρ+
|y|∫

0

∂|y|G0 (|y|, ρ) J0 (µ1kρ) dρ, (4.42)

RZ0k (|y|) =
1∫

|y|

G0 (|y|, ρ) J0 (µ1kρ) dρ+
|y|∫

0

G0 (|y|, ρ) J0 (µ1kρ) dρ. (4.43)

According to Remark 4.5 the system of eigenfunctions (4.32)–(4.43) must be orthog-
onal and, accordingly, it constitutes an orthogonal basis. However, the orthogonality
of the system of eigenfunctions (4.32)–(4.43) also follows from its construction, and
this property is verified by direct calculations.

Remark 4.7. In Section 6, in the numerical example, for convenience, we introduce
the following notation for the eigenfunctions that correspond to the eigenvalues µ2

j+1,k,

w0k(y) = w
(−)
0k (y), w−jk(y) = w

(−)
jk (y), wjk(y) = w

(+)
jk (y), k = 1, 2, 3, . . . ,

(4.44)
where w(−)

jk (y), w(+)
jk (y) and w0k(y) are defined according to (4.32)–(4.35).
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5. AN OPTIMIZATION METHOD FOR SOLVING THE INVERSE PROBLEM.
OPTIMALITY CONDITIONS

We proceed to solving inverse problem (2.1)–(2.5) by the optimization method. We re-
place the fulfillment of the overdetermination conditions (2.5) by the minimization of
the following regularized functional

J [w, f ] =
∫

|y|<1
|w(y, T ) − wT (y)|2 dy + γ

∫

|y|<1
|f(y)|2dy, (5.1)

on a pair of functions {w(y, t), f(y)} that satisfies boundary value problem (2.1)–(2.4),
where γ = α

∫ T

0 |g(t)|2dt, α is the initial regularization parameter. We introduce the
Hamilton–Pontryagin function:

H[w,ψ, f, y] = −w(y, T )ψ(y, T ) − |w(y, T ) − wT (y)|2

+ f(y)BT [g(t)ψ(y, t)] − γ|f(y)|2,
(5.2)

According to (5.1)–(5.2) and in accordance with the results of the Pontryagin
maximum principle ([6, 17]), we need to solve the following optimality conditions
(5.3)–(5.11): the direct boundary value problem

∂tw − ∆w = g(t)
2γ BT [g(t)ψ(y, t)] − ∇P, (y, t) ∈ Qyt, (5.3)

divw = 0, (y, t) ∈ Qyt, (5.4)

w = 0, (y, t) ∈ Σyt, (5.5)

w (y, 0) = 0, |y| < 1, (5.6)

and the adjoint boundary value problem

−∂tψ − ∆ψ = −∇S, (y, t) ∈ Qyt, (5.7)

divψ=0, (y, t) ∈ Qyt, (5.8)

ψ = 0, (y, t) ∈ Σyt, (5.9)

ψ(y, T ) = −2[w(y, T ) − wT (y)], |y| < 1, (5.10)

where the unknown function f(y) is determined by formula

f(y) = 1
2γBT [g(t)ψ(y, t)]. (5.11)

Using the Riccati transform [17] (this is an artificial trick for splitting (5.3)–(5.6)
and (5.7)–(5.10)) we get

{
ψi(y, t;wi) = Ei(y, t)wi + ri(y, t), i = 1, 2,
S(y, t;w) = (S̃(y, t), w) + S3(y, t),

(5.12)
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where
S̃ = {S1, S2}, (S̃, w) = S1w1 + S2w2,

E = {E1, E2}, r = {r1, r2}, S1, S2, S3,

are unknown functions to be determined. We will split optimality conditions
(5.3)–(5.10):

−∂tE(y, t) − ∆E(y, t) = −∇(S1 + S2), (y, t) ∈ Qyt, (5.13)

divE = 0, (y, t) ∈ Qyt, (5.14)

E(y, t) = 0, (y, t) ∈ Σyt, (5.15)

E(y, T ) = −2, y ∈ Ω, (5.16)

− ∂tr(y, t) − ∆r(y, t) + g(t)
2γ E(y, t)BT [g(t)E(y, t)w̃(y, t)

+ r(y, t)] = −∇S3, (y, t) ∈ Qyt,

(5.17)

div r = 0, (y, t) ∈ Qyt, (5.18)

r(y, t) = 0, (y, t) ∈ Σyt, (5.19)

r(y, T ) = 2wT (y), y ∈ Ω, (5.20)

where in equation (5.17) the function w̃(y, t) is given at the first iteration only, instead
of which in subsequent iterations we will take the solution of the following boundary
value problem (5.21)–(5.24).

After solving boundary value problems (5.13)–(5.20), by using (5.12), from
(5.3)–(5.6) we obtain

∂tw − ∆w = g(t)
2γ BT [g(t)(E(y, t)w + r(y, t))] − ∇P, (y, t) ∈ Qyt, (5.21)

divw = 0, (y, t) ∈ Qyt, (5.22)

w = 0, (y, t) ∈ Σyt, (5.23)

w(y, 0) = 0, |y| < 1. (5.24)

Note that in boundary value problem (5.21)–(5.24) only the functions w(y, t),
P (y, t) are unknown.
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6. EXAMPLE: CALCULATION RESULTS AND GRAPHS

For a numerical example, assume that g(t) = {g1(t), g2(t)} = {1, 1}. Above, based on
relations (4.32)–(4.44), we have constructed an orthogonal basis

{wjk(y), j = 0,±1,±2, . . . , k = 1, 2, 3, . . .}

in space V. By using this basis, we introduce an approximate solution

wN (y, t) =
N∑

j=−N,k=1
gjkN (t)wjk(y), EN (y, t) =

N∑

j=−N,k=1
ejkN (t)wjk(y),

rN (y, t) =
N∑

j=−N,k=1
hjkN (t)wjk(y),

for direct boundary value problem (5.21)–(5.24) and adjoint boundary value problem
(5.13)–(5.20), formulated in a weak form:

(∂twN , wlm) + ((wN , wlm)) = 1
2γ (BT [ENwN + rN ], wlm) ,

−N ≤ l ≤ N, m = 1, . . . , N,
(6.1)

wN (y, 0) = 0, (6.2)

− (∂tEN , wlm) + ((EN , wlm)) = 0, −N ≤ l ≤ N, m = 1, . . . , N, (6.3)

EN (y, T ) = −2, (6.4)

− (∂trN , wlm) + ((rN , wlm)) = 1
2γEN (BT [ENwN + rN ]N , wlm) ,

−N ≤ l ≤ N, m = 1, . . . , N,
(6.5)

rN (y, T ) = 2wT N . (6.6)

Functions gjkN (t), ejkN (t), hjkN (t), −N ≤ j ≤ N, 1 ≤ k ≤ N are scalar functions
defined on [0, T ], (6.1), (6.3) and (6.5) are a system of ordinary differential equations
with respect to these functions. For each −N ≤ l ≤ N, m = 1, . . . , N from (6.1)–(6.2),
(6.3)–(6.4) and (6.5)–(6.6) we have

|wlm(y)|2g′
lmN (t) +

N∑

j=−N,k=1
((wjk(y), wlm(y)))gjkN (t)

= 1
2γ

N∑

n=−N,s=1

N∑

j=−N,k=1
(BT [ejkN (t)gnsN (t)wjk(y)wns(y)

+ hnsN (t)wns(y)], wlm(y)),

(6.7)
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glmN (0) = 0, (6.8)

− |wlm (y)|2 e′
lmN (t) +

N∑

j=−N,k=1
((wjk (y) , wlm (y))) ejkN (t) = 0, (6.9)

elmN (T ) = −2
∫

|y|<1

wlm(y)dy. (6.10)

− |wlm(y)|2h′
lmN (t) +

N∑

j=−N,k=1
(wjk(y), wlm(y)hjkN (t))

= 1
2γ

N∑

j=−N,k=1
ejkN (t)wjk(y)

(
BT

[ N∑

j=−N,k=1
ejkN (t)wjk(yt)

×
N∑

j=−N,k=1
gjkN (t)wjk(yt) +

N∑

j=−N,k=1
hjkN (t)wjk(y)

]
, wlm(y)

)
,

(6.11)

hlmN (T ) = 2 (wT , wlmN ) . (6.12)

Based on the relations given by formulas (6.7)–(6.12), numerical experiments were
carried out for N = 0 and N = 1.

Figures 1–4 show the graphs of the specified and calculated final functions (for
the first component of the fluid velocity w1(y, t)). To obtain graphs of the second
component w2(y, t) in Figures 1–4, it is only necessary to swap the axes y1 and y2.
Moreover, the y2 axis is located in figures, from left to right, and the y1 axis is vertical
to the drawing plane. Note that when plotting graphs, the program automatically uses
the formula θ = ãrctan

(
y2
y1

)
specified in (4.26)–(4.27).

The calculations were carried out for T = 2, when Ω is a circle of unit radius
centered at the origin, and for different values of the regularizing parameter γ in the
minimized functional:

∥w(y, T ) − wT ∥2 + γ∥f(y)∥2, γ = 4α. (6.13)

Figure 5 shows a graph of the change in the values of minimized functional (6.13)
(excluding the regularizing term) depending on the values of the γ parameter.

Thus, we get a decrease in the difference between the final values of the calculated
and given functions ∥w(y, T ) − wT (y)∥ in L2-norm with a decrease of γ parameter.

Remark 6.1. The convergence and stability of the proposed algorithm for solving
the optimization problem is ensured by the corresponding result from the book [11]
(see Chapter 2, Theorems 2.5.1–2.5.3 therein) for the Tikhonov regularization.

Note that the elements {q, f} in Theorem 2.5.1 from [11] in our case, namely, in
the functional (6.13), respectively, mean {f, wT }, i.e. Af = w(y, T ), f = wT .
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Therefore, from [11, Theorem 2.5.1] there exists a unique fγ ∈ H, since the operator
A : H → V ∩ H2(Ω), defined by relation Af =

[
A−1

1 (gf)
]

|t=T
, is a linear completely

continuous operator from H to H, where A1w = gf is the notation of the initial
boundary value problem (2.1)–(2.4) in operator form.

When numerically solving the example, we took into account the statements of
Theorems 2.5.2–2.5.3 from [11]. Namely, we ensured the fact that the accuracy
of the approximation of the element wT by wT δ, in a sense, should be higher than
the decreasing order of the regularizing parameter γ(δ) at δ → 0 (for example,
lim
δ→0

δ2/γ(δ) → 0, where ∥wT − wT δ∥V∩H2(Ω) ≤ δ).

Fig. 1. Graphs of the given
and calculated final functions,

γ = 1

Fig. 2. Graphs of the given
and calculated final functions,

γ = 0.13

Fig. 3. Graphs of the given
and calculated final functions,

γ = 0.026

Fig. 4. Graphs of the given
and calculated final functions,

γ = 0.014
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Fig. 5. Graph of the values of the minimized functional (excluding the regularizing
term)
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