PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure Analysis and Powder Bed Fusion of Inconel 738 Powder Materials Mixed with Nano-Sized Ceramic Powders

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Powder materials strengthened by oxide dispersion are generally made by in-situ method; direct oxide dispersing in matrix powders during atomization. There is also ex-situ method; oxides dispersing by mixing with matrix powders. In this study powder mixtures (Inconel 738 matrix powder + SiO2 powder + Al2O3 powder) were mechanically manufactured by ex-situ process, a low-energy ball milling method. Then, specimens of the as-mill powders were manufactured by laser powder bed fusion (L-PBF) method and spark plasma sintering (SPS) process. The microstructures of each prepared specimen were compared according to process variables. SEM, EDS, XRD, and Electron Backscatter Diffraction (EBSD) analyses were applied in this study.
Twórcy
autor
  • University of Ulsan, School of Materials Science & Engineering, Ulsan, Republic of Korea
autor
  • University of Ulsan, School of Materials Science & Engineering, Ulsan, Republic of Korea
autor
  • University of Ulsan, School of Materials Science & Engineering, Ulsan, Republic of Korea
  • University of Ulsan, School of Materials Science & Engineering, Ulsan, Republic of Korea
autor
  • University of Ulsan, School of Materials Science & Engineering, Ulsan, Republic of Korea
Bibliografia
  • [1] B. Dubiel, A. Czyrska-Filemonowicz, Inzynieria Materialowa 21, 20-28 (2000).
  • [2] Ruifeng Xu, Zhaowen Geng, Yiyou Wu, Chao Chen, Mang Ni, Dan Li, Taomei Zhang, Hongtao Huang, Feng Liu, Ruidi Li, Kechao Zhou, Advanced Powder Materials 1, 100056 (2022).
  • [3] Sanghoon Noh, Tae Kyu Kim, J. Korean Powder Metall. Inst. 28, 5, 375-380 (2021).
  • [4] Seunghyeok Chung, Bin Lee, Soo Yeol Lee, Changwoo Do, Ho Jin Ryu, Journal of Materials Science & Technology 85, 62-75 (2021).
  • [5] Raj Mohan et al., Hindawi Scanning 2022, (2022).
  • [6] J.B. Fogagnolo, M.H. Robert, J.M. Torralba, Materials Science and Engineering A 426, 85-94 (2006).
  • [7] D.G. Morris, M.A. Morris, Materials Science and Engineering A 125, 97-106 (1990).
  • [8] Ashwath Yegyan Kumar, Yun Bai, Anders Eklund, Christopher B. Williams, Additive Manufacturing 24, 115-124 (2018).
  • [9] C. Selcuk, S. Bond, P. Woollin, Powder Metallurgy 53, 7-11 (2010).
  • [10] M.M. Baloch, H.K.D.H. Bhadeshia, Materials Science and Technology 6, 1236-1246 (1990).
  • [11] Sunil Kumar C. Pillai, Benoit Baron, Michael J. Pomeroy, Stuart Hampshire, Journal of the European Ceramic Society 24, 3317-3326 (2004).
  • [12] Jose Alberto Muñiz-Lerma, Yuan Tian, Xianglong Wang, Raynald Gauvin, Mathieu Brochu, Progress in Additive Manufacturing 4, 97-107 (2019).
  • [13] Sunil Kumar C. Pillai, Benoit Baron, Michael J. Pomeroy, Stuart Hampshire, Journal of the European Ceramic Society 24, 3317-3326 (2004).
  • [14] Minghong Li, Lilin Wang, Haiou Yang, Shuya Zhang, Xin Lin, Weidong Huang, Materials Science and Engineering A 854, (2022).
Uwagi
This work was supported by the Ministry of Trade, Industry & Energy (MOTIE, Korea Rep.) under Industrial Technology Innovation Program No. 20017647 “Development of oxide dispersion strengthened superalloy materials and manufacturing technology for hypersonic engines”. This results was supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-003)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff97b287-d073-49e5-a0b3-e75d5285e88c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.