PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Highly-efficient fully-fiberized mid-infrared differential frequency generation source and its application to laser spectroscopy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Widely-tunable, fully-monolithic, mid-infrared (mid-IR) deference frequency generation source (DFG) is presented. By using a custom designed fiber-pigtailed periodically poled lithium niobate (PPLN) crystal module the idler beam was generated with an efficiency of 21%/W, yielding 2.6 mW of optical output power. The proposed all-fiber configuration radically simplified the optical frequency conversion setup, making it robust and easily configurable. The usefulness of the constructed source was verified by performing simultaneous wavelength modulation spectroscopy (WMS) laser trace gas detection of methane, near 2999 cm⁻¹, and ethane, near 2997 cm⁻¹, via two independently generated, tunable idler beams.
Rocznik
Strony
269--274
Opis fizyczny
Bibliogr. 23 poz., il., rys., tab.
Twórcy
autor
  • Faculty of Electronics, Laser & Fiber Electronics Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
autor
  • Faculty of Electronics, Laser & Fiber Electronics Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
  • Faculty of Electronics, Laser & Fiber Electronics Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
autor
  • Faculty of Electronics, Laser & Fiber Electronics Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
autor
  • Faculty of Electronics, Laser & Fiber Electronics Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
Bibliografia
  • [1] R.F. Curl, F.K. Tittel, Tunable infrared laser spectroscopy, annual reports section ‘C’, Phys. Chem. 98 (2002) 219–272.
  • [2] A.V. Bernatskiy, V.V. Lagunov, V.N. Ochkin, S.N. Tskhai, Study of water molecule decomposition in plasma by diode laser spectroscopy and optical actinometry methods, Laser Phys. Lett. 13 (2016) 075702.
  • [3] D. Kumar, S. Gautam, S. Kumar, S. Gupta, H.B. Srivastava, S.N. Thakur, R.C. Sharma, Ultrasensitive photoacoustic sensor based on quantum cascade laser spectroscopy, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 176 (2017) 47–51.
  • [4] T. Moguilnaya, I. Suminov, S. Ignatov, Detecting presence of live and dead pathogenic organisms in water and the water solutions by laser spectroscopy, Laser Phys. Lett. 14 (2017) 055601.
  • [5] J. Westberg, L.A. Sterczewski, G. Wysocki, Mid-infrared multiheterodyne spectroscopy with phase-locked quantum cascade lasers, Appl. Phys. Lett. 110 (2017) 141108.
  • [6] C. Zheng, W. Ye, N.P. Sanchez, C. Li, L. Dong, Y. Wang, R.J. Griffin, F.K. Tittel, Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy, Sens. Actuators B: Chem. 244 (2017) 365–372.
  • [7] P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, S. Lundqvist, Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-µm range, Appl. Phys. B 105 (2011) 427.
  • [8] K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, F.K. Tittel, CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell, Appl. Phys. B 112 (2013) 461–465.
  • [9] S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Naehle, M. Fischer, A. Bauer, S. Höfling, J. Koeth, Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm, Appl. Opt. 51 (2012) 6009–6013.
  • [10] K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, F.K. Tittel, Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane, Appl. Phys. B 106 (2012) 251–255.
  • [11] C. Li, L. Dong, C. Zheng, F.K. Tittel, Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 µm room-temperature CW interband cascade laser, Sens. Actuators B: Chem. 232 (2016) 188–194.
  • [12] L. Liu, B. Xiong, Y. Yan, J. Li, Z. Du, Hollow waveguide-enhanced mid-infrared sensor for real-time exhaled methane detection, IEEE Photonics Technol. Lett.28 (2016) 1613–1616.
  • [13] M. Nikodem, K. Krzempek, R. Karwat, G. Dudzik, K. Abramski, G. Wysocki, Chirped laser dispersion spectroscopy with differential frequency generation source, Opt. Lett. 39 (2014) 4420–4423.
  • [14] K. Krzempek, G. Sobon, K.M. Abramski, DFG-based mid-IR generation using a compact dual-wavelength all-fiber amplifier for laser spectroscopy applications, Opt. Express 21 (2013) 20023–20031.
  • [15] D. Richter, A. Fried, B.P. Wert, J.G. Walega, F.K. Tittel, Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection, Appl. Phys. B 75 (2002) 281–288.
  • [16] C.R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang, Mid-infrared supercontinuum covering the 1. 4–13. 3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre, Nat. Photonics 8 (2014) 830–834.
  • [17] C. Zheng, W. Ye, N.P. Sanchez, A.K. Gluszek, A.J. Hudzikowski, C. Li, L. Dong, R.J. Griffin, F.K. Tittel, Infrared dual-gas CH4 C2H6 sensor using two continuous-wave interband cascade lasers, IEEE Photonics Technol. Lett. 28 (2016) 2351–2354.
  • [18] F. Keilmann, S. Amarie, Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation, J. Infrared Millimeter Terahertz Waves 33 (2012) 479–484.
  • [19] L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3, J. Opt. Soc. Am. B 12 (1995) 2102–2116.
  • [20] Z. Cao, X. Gao, W. Chen, H. Wang, W. Zhang, Z. Gong, Study of quasi-phase matching wavelength acceptance bandwidth for periodically poled LiNbO3crystal-based difference-frequency generation, Opt. Lasers Eng. 47 (2009)589–593.
  • [21] J. Wojtas, A. Gluszek, A. Hudzikowski, K.F. Tittel, Mid-infrared trace gas sensortechnology based on intracavity quartz-enhanced photoacoustic spectroscopy, Sensors 17 (2017) 513.
  • [22] A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons, J. Quant. Spectrosc. Radiat. Transfer 107 (2007) 407–420.
  • [23] A.L. Chakraborty, K. Ruxton, W. Johnstone, M. Lengden, K. Duffin, Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line, Opt. Express 17(2009) 9602–9607.
Uwagi
PL
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff93e132-f921-46c2-ba1a-31e9dfaf4643
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.