Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Charakterystyka jakościowa prezentacji wiatraka 3D na podstawie danych skanowania laserowego i fotogrametrii
Języki publikacji
Abstrakty
The cultural landscapes of each country are an important element of its heritage. An excellent example of this is the presence of objects that in the past fulfilled an important industrial and economic function in a region. This group of objects includes windmills, which have lost their economic importance due to ongoing industrialisation. However, their continued presence in the landscape is evidence of the economic development of a particular region. The growing cultural awareness of society and the increased protection of cultural heritage objects mean that windmills, which have been neglected for years, are increasingly subject to conservation measures. In order to carry out preservation work, it is necessary to take inventory and create visualizations of windmills, posing problems in connection with the selection of suitable measurement methods and techniques, as well as the integration of the obtained data. This study uses photogrammetry and laser scanning to measure windmill structure for 3D modeling and visualization. The object of this study was a typical 19th century wooden windmill, which was predominant in western Poland. The research employed the methods of terrestrial laser scanning, airborne laser scanning and low-level aerial photogrammetry. The results of the research were exemplary visualizations of a windmill created from the acquired measurement data, evaluated in terms of their suitability for the further creation of various cartographic representations. In addition, the potential for using the most advantageous source of measurement data about the examined object to develop a conservation tool was identified.
Krajobrazy kulturowe każdego kraju stanowią istotny element jego dziedzictwa. Doskonałym przykładem jest obecność obiektów, które w przeszłości pełniły ważną funkcję przemysłową i gospodarczą w regionie. Do tej grupy obiektów należą wiatraki, które straciły na znaczeniu gospodarczym w wyniku postępującej industrializacji. Jednak ich ciągła obecność w krajobrazie świadczy o rozwoju gospodarczym danego regionu. Rosnąca świadomość kulturowa społeczeństwa i wzmożona ochrona obiektów dziedzictwa kulturowego sprawiają, że wiatraki, przez lata zaniedbane, są coraz częściej poddawane zabiegom konserwatorskim. W celu przeprowadzenia prac konserwatorskich konieczna jest inwentaryzacja i wizualizacja wiatraków, co stwarza problemy związane z doborem odpowiednich metod i technik pomiarowych, a także integracją uzyskanych danych. W niniejszej pracy wykorzystano fotogrametrię i skanowanie laserowe do pomiaru konstrukcji wiatraków w celu ich modelowania i wizualizacji 3D. Przedmiotem badań był typowy drewniany wiatrak z XIX wieku, dominujący w zachodniej Polsce. W badaniach wykorzystano metody naziemnego skaningu laserowego, lotniczego skaningu laserowego oraz fotogrametrii lotniczej niskiego pułapu. Rezultatem badań były przykładowe wizualizacje wiatraka, stworzone na podstawie pozyskanych danych pomiarowych, ocenione pod kątem ich przydatności do dalszego tworzenia różnorodnych reprezentacji kartograficznych. Ponadto zidentyfikowano potencjał wykorzystania najkorzystniejszego źródła danych pomiarowych o badanym obiekcie do opracowania narzędzia konserwatorskiego.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
77--98
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
autor
- Department of Environmental Remote Sensing and Soil Science, Adam Mickiewicz University, Poznań
autor
- Department of Landscape Ecology, Adam Mickiewicz University, Poznań
Bibliografia
- 1. Arias P., Ordonez C., Lorenzo H., Herraez J. 2006. Methods for documenting historical agroindustrial buildings: a comparative study and a simple photogrammetric method. J Cult. Heritage, 7(4) 350–354. https://doi.org/10.1016/j.culher.2006.09.002
- 2. Benesha J., Lee J., James D.A., White B. 2020. Are You for Real? Engineering a Virtual Lab for the Sports Sciences Using Wearables and IoT. Proceedings, 49(1), 110. https://doi.org/10.3390/proceedings2020049110.
- 3. Bewley R.H. 2003. Aerial survey for archaeology. The Photogrammetric Record, 18(104) 273–292. https://doi.org/10.1046/j.0031-868X.2003.00023.x
- 4. Blanco-Pons S., Carrión-Ruiz B., Lerma J.L., Villaverde V. 2019. Design and implementation of an augmented reality application for rock art visualization in Cova dels Cavalls (Spain). Journal of Cultural Heritage, 39 177–185. https://doi.org/10.1016/j.culher.2019.03.014
- 5. Bryan P.G., Corner I., Stevens D. 1999. Digital rectification techniques for architectural and archaeological presentation. The Photogrammetric Record, 16(93), 399–415. https://doi.org/10.1111/0031-868X.00131
- 6. Brykała D., Podgórski Z. 2020. Evolution of landscapes influenced by watermills, based on examples from Northern Poland, Landscape and Urban Planning, 198, 103798. https://doi.org/10.1016/j.landurbplan.2020.103798
- 7. Büyüksalih G., Kan T., Özkan G.E., Meriç M., Isın L., Kersten T.P. 2020. Preserving the Knowledge of the Past Through Virtual Visits: From 3D Laser Scanning to Virtual Reality Visualisation at the Istanbul Çatalca İnceğiz Caves. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88, 133–146. https://doi.org/10.1007/s41064-020-00091-3
- 8. Clapuyt F., Vanacker V., Van Oost K. 2016. Reproducibility of UAV based earth topography reconstructions based on structure-from-motion algorithms. Geomorphology, 260, 4–15. https://doi.org/10.1016/j.geomorph.2015.05.011
- 9. Desmond L.G., Bryan P.G. 2003. Recording architecture at the archaeological site of Uxmal, Mexico: a historical and contemporary view. The Photogrammetric Record, 18(102), 105–130. https://doi.org/10.1111/0031-868X.t01-1-00013
- 10. Diaz-Andreu M., Hobbs R., Rosser N., Sharpe K., Trinks I. 2005. Long Meg: rock art recording using 3D laser scanning. Past: The Newsletter of the Prehistoric Society, 50, 2–6.
- 11. Doneus M., Briese C., Fera M., Janner M. 2008. Archaeological prospection of forested areas using full-waveform airborne laser scanning. Journal of Archaeological Science, 35(4), 882–893. https://doi.org/10.1016/j.jas.2007.06.013
- 12. Entwistle J.A., McCaffrey K.J.W., Abrahams P.W. 2009. Three-dimensional (3D)visualisation: the application of terrestrial laser scanning in the investigation of historical Scottish farming townships. Journal of Archaeological Science, 36(3), 860–866. https://doi.org/10.1016/j. jas.2008.11.018
- 13. Gabryś M., Ortyl L. 2020. Georeferencing of Multi-Channel GPR – Accuracy and Efficiency of Mapping of Underground Utility Networks. Remote Sensing, 12(18), 2945. https://doi.org/10.3390/rs12182945
- 14. Gomes L., Bellon O.R.P., Silva L. 2014. 3D reconstruction methods for digital preservation of cultural heritage: a survey, pattern recognit. Lett., 50, 3–14. http://dx.doi.org/10.1016/j. patrec.2014.03.023.
- 15. Haddad N. 2007. Towards creating a dialogue between the specialized technician and non technician users of the 3D laser scanner. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5), C53.
- 16. Halik Ł., Smaczyński M. 2017. Geovisualisation of relief in a virtual reality system on the basis of low aerial images. Pure and Applied Geophysics, 175, 3209–3221. https://doi.org/10.1007/s00024-017-1755-z
- 17. Herrero-Tejedor T.R., Arques Soler F., Lopez-Cuervo Medina S., der la Cabrera M.R.O., Martın Romero J.L. 2020. Documenting a cultural landscape using point-cloud 3D models obtained with geomatic integration techniques. The case of the El Encın atomic garden. Madrid (Spain). PLoS One, 15(6), 0235169. https://doi.org/10.1371/journal.pone.0235169
- 18. Horbiński T., Medyńska-Gulij B. 2017. Geovisualisation as a process of creating complementary visualisations: static two-dimensional, surface three-dimensional, and interactive. Geodesy and Cartography, 66(1), 45–58. https://doi.org/10.1515/geocart-2017-0009
- 19. Kaźmierowski C., Ceglarek J., Cierniewski J., Jasiewicz J., Królewicz S., Wyczałek-Jagiełło M. 2015. Soil surface roughness quantification using DEM obtained from UAV photogrammetry. In: Geomorphometry for Geosciences. Bogucki Wydawnictwo Naukowe, Adam Mickiewicz University in Poznań – Institute of Geoecology and Geoinformation. J. Jasiewicz, Z. Zwoliński, H. Mitasova, T. Hengl (eds.). https://doi.org/10.13140/ RG.2.1.4811.8889
- 20. Klapa P. 2022. TLS point cloud as a data source for multi-LOD of 3D models. Geomatics, Land management and Landscape, 2, 63–73. https://doi.org/10.15576/GLL/2022.2.63
- 21. Klapa P., Mitka B., Zygmunt M. 2022. Integration of TLS and UAV data for the generation of a three-dimensional basemap. Advances in Geodesy and Geoinformation (formerly Geodesy and Cartography), 71, 2, article no. e27, 2022. https://doi.org/10.24425/agg.2022.141301
- 22. Klapa P., Gawronek P. 2023. Synergy of Geospatial Data from TLS and UAV for Heritage Building Information Modeling (HBIM). Remote Sensing, 15(1), 128. https://doi.org/10.3390/rs15010128
- 23. Klewe T., Strangfeld C., Kruschwitz S. 2021. Review of moisture measurements in civil engineering with ground penetrating radar – Applied methods and signal features. Construction and Building Materials, 278, 122250. https://doi.org/10.1016/j.conbuildmat.2021.122250
- 24. Kolivand H., El Rhalibi A., Sunar M.S., Saba T. 2018. ReVitAge: Realistic virtual heritage taking shadows and sky illumination into account. Journal of Cultural Heritage, 32, 166–175. https://doi.org/10.1016/j.culher.2018.01.020
- 25. Koutsoudis A., Vidmar B., Ioannakis G., Arnaoutoglou F., Pavlidis G., Chamzas C. 2013. Multi-image 3D reconstruction data evaluation. Journal of Cultural Heritage, 15(1), 73–79. https://doi.org/10.1016/j.culher.2012.12.003
- 26. Lerma J.L., Navarro S., Cabrelles M., Villaverde V. 2010. Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: the Upper Palaeolithic Cave of Parpalló as a case study. Journal of Archaeological Science, 37(3), 499–507. https://doi.org/10.1016/j.jas.2009.10.011
- 27. Lerma J.L., Navarro S., Cabrelles M., Seguí A.E., Haddad N., Akasheh T. 2011. Integration of laser scanning and imagery for photorealistic 3D architectural documentation. Laser Scanning, Theory and Applications, 414–430.
- 28. López F.J., Lerones P.M., Llamas J., Gómez-García-Bermejo J., Zalama E. 2018. A Review of Heritage Building Information Modeling (H-BIM). Multimodal Technol. Interact., 2, 21. https://doi.org/10.3390/mti2020021
- 29. Lorek D., Medyńska-Gulij B. 2020. Scope of information in the legends of topographical maps in the nineteenth century Urmesstischblätter. Cartogr J., 52(2), 113–129. https://doi.org/10.1080/00087041.2018.1547471
- 30. Lütjens M., Kersten T.P., Dorschel B., Tschirschwitz F. 2019. Virtual Reality in Cartography: Immersive 3D Visualization of the Arctic Clyde Inlet (Canada) Using Digital Elevation Mod els and Bathymetric Data. Multimodal Technol. Interact., 3(1), 9. https://doi.org/10.3390/ mti3010009
- 31. Łukowiak R., Barłóg P., Ceglarek J. Soil and Plant Nitrogen Management Indices Related to Within-Field Spatial Variability. Remote Sensing, 14(18), 1848. https://doi.org/10.3390/agronomy14081845
- 32. Maksymowicz Z. 2015. Przeminęło z wiatrem... historii. O legnickich wiatrakach. In: Szkice Legnickie, XXXVI. W. Kondusza (ed.), Poland.
- 33. Miřijovský J., Langhammer J. 2015. Multitemporal monitoring of the morphodynamics of a mid-mountain stream using UAS photogrammetry. Remote Sens, 7(7), 8586–8609. https://doi.org/10.3390/rs70708586.
- 34. Nex F., Remondino F. 2014. UAV for 3D mapping applications: a review. Appl. Geomat., 6(1), 1–15. https://doi.org/10.1007/s12518-013-0120-x
- 35. Padró J.C., Muñoz F.J., Planas J., Pons X. 2019. Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms. Int. J. Appl. Earth Obs. Geoinf., 75, 130–140. https://doi.org/10.1016/j.jag.2018.10.018
- 36. Perez-Martin E., Herrero-Tejedor T.R., Gomez-Elvira M.A., Rojas-Sola J.I., Conejo-Martin M.A. 2011. Graphic study and geovisualization of the old windmills of La Mancha (Spain). Appl. Geogr., 31(3), 941–949. https://doi.org/10.1016/j.apgeog.2011.01.006
- 37. Pieraccini M., Miccinesi L., Conti A., Fiorini L., Tucci G., Pieri I., Corazzini S. 2020. Integration of GPR and TLS for investigating the floor of the ‘Salone dei Cinquecento’ in Palazzo Vecchio, Florence, Italy. Archaeological Prospection, 30, 27–32. https://doi.org/10.1002/arp.1788
- 38. Pritchard D., Sperner J., Hoepner S., Tenschert R. 2017. Terrestrial laser scanning for heritage conservation: the Cologne Cathedral documentation project. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 213–220. http://dx.doi.org/10.5194/isprs-annals-IV-2-W2-213-2017
- 39. Ravi R., Lin Y.J., Elbahnasawy M., Shamseldin T., Habib A. 2018. Bias impact analysis and calibration of terrestrial mobile Lidar system with several spinning multibeam laser scanners. IEEE Transactions on Geoscience and Remote Sensing, 56(9), 5261–5275. https://doi.org/10.1109/TGRS.2018.2812782
- 40. Robson Brown K.A., Chalmers A., Saigol T., Green C., D’Errico F. 2001. An auto-mated laser scan survey of the Upper Palaeolithic rock shelter of Cap Blanc. Journal of Archaeological Science, 28(3), 283–289.
- 41. Rossi G., Tanteri L., Tofani V., Vannocci P., Moretti S., Casagli N. 2018. Multitemporal UAV surveys for landslide mapping and characterization. Landslides, 15, 1045–1052. https://doi.org/10.1007/s10346-018-0978-0
- 42. Shepherd D.G. 1990. Historical development of the windmill (No. NASA-CR-4337). NASA. https://doi.org/10.2172/6342767
- 43. Smaczyński M., Horbiński T. 2021. Creating 3D Model of the Existing Historical Topographic Object Based on Low-Level Aerial Imagery. KN, Journal of Cartography and Geographic Information, 71, 33–43. https://doi.org/10.1007/s42489-020-00061-0
- 44. Smaczyński M., Lorek D., Zagata K., Horbiński T. 2002. Cultural Heritage with the Use of LowLevel Aerial Survey Techniques, Space Modelling and Multimedia Reconstruction of the Topographic Landscape (Example of a Windmill in Western Poland). KN, J. Cartogr. Geogr. Inf., 72, 279–291. https://doi.org/10.1007/s42489-022-00122-6
- 45. Smaczyński M., Medyńska-Gulij B. 2017. Low aerial imagery – an assessment of georeferencing errors and the potential for use in environmental inventory. Geodesy and Cartography, 66(1), 89–104. https://doi.org/10.1515/geocart-2017-0005
- 46. Smaczyński M., Medyńska-Gulij B., Halik Ł. 2020. The Land Use Mapping Techniques (Including the Areas Used by Pedestrians) Based on Low-Level Aerial Imagery. ISPRS Int. J. GeoInf., 9(12), 754. https://doi.org/10.3390/ijgi9120754
- 47. Stanton M., Hartley T., Loizides F., Worrallo A. 2017. Dual-mode user interfaces for web based interactive 3D virtual environments using three. In: Human-Computer Interaction interact 2017. 16th IFIP TC 13 International Conference, Mumbai, India, September 25–29, 2017, Proceedings, Part IV, 16, 441–444. Springer International Publishing.
- 48. Statuto D., Cillis G., Picuno P. 2017. Using Historical Maps within a GIS to Analyze Two Centuries of Rural Landscape Changes in Southern Italy. Land, 6(3) 65. https://doi.org/10.3390/land6030065
- 49. Themistocleous K. 2016. Model reconstruction for 3D, vizualization of cultural heritage sites using open data from social media: The case study of Soli, Cyprus. J. Archaeol. Sci. Rep., 14, 774–781. http://dx.doi.org/10.1016/j.jasrep.2016.08.045
- 50. Walmsley A.P., Kersten T.P. 2020. The Imperial Cathedral in Königslutter (Germany) as an Immersive Experience in Virtual Reality with Integrated 360° Panoramic Photography. Appl. Sci., 10(4) 1517. https://doi.org/10.3390/app10041517
- 51. Westoby M.J., Brasington J., Glasser N.F., Hambrey M.J., Reynolds J.M. 2012. Structure-fromMotion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. https://doi.org/10.1016/j.geomorph.2012.08.021
- 52. Wilson J.W. 2005. Historical and computational analysis of long-term environmental change: forests in the Shenandoah Valley of Virginia. Hist. Geogr., 205(33), 33–53.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff88e242-7925-4608-ba93-2a96c1cc4add
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.