PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Near-field multiple‑blast resistance of G-HPC sandwich walls incorporated with metallic tube core

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Multiple-blast loading induced in one explosion case more significantly threatens the safety of engineering structures, compared with single-blast loading. This study first proposed a novel sandwich wall based on the steel wire mesh (SWM) geopolymer based high-performance concrete (G-HPC) slab and metallic tube core (MTC) to mitigate the threat induced by the multiple-blast loading. The dynamic responses and failure mechanism of the sandwich wall was investigated by field blast tests and numerical simulations. The damage to the sandwich wall under different multiple-blast scenes was estimated in detail. The effect of parameters including the spacing of the steel tubes and the thickness of the front/rear slab was also investigated by numerical simulations. The experimental results showed that the sandwich walls could still maintain the integrity, indicating an excellent multiple-blast resistance. The numerical results illustrated that the front slabs could directly resist the multiple-blast loading and the metallic tube core could further mitigate the blast wave propagation. The parametric analysis indicated that the increase in the thickness of the rear slab improves the multiple-blast resistance of the sandwich wall.
Rocznik
Strony
art. no. e75, 2024
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Earthquake Engineering Research and Test Center, Guangzhou University, Guangzhou 510006, China
autor
  • Earthquake Engineering Research and Test Center, Guangzhou University, Guangzhou 510006, China
autor
  • Earthquake Engineering Research and Test Center, Guangzhou University, Guangzhou 510006, China
autor
  • School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
autor
  • School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
autor
  • RockTek Co. Ltd., Daye 435106, China
autor
  • School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
Bibliografia
  • 1. Investigation Report on Major Fire/Explosion Accident in "8.12" Hazards Warehouse of Ruihai Company of Tianjin Port. http://www.gov.cn/foot/2016-02/05/content_5039788.htm, (in China).
  • 2. Valsamos G, Larcher M, Casadei F. Beirut explosion 2020: a case study for a large-scale urban blast simulation. Saf Sci. 2021;137:105190.
  • 3. Draganic H, Gazic G, Varevac D. Experimental investigation of design and retrofit methods for blast load mitigation - a state-of-the-art review. Eng Struct. 2019;190:189-209.
  • 4. Zhu H, Luo X, Ji C, Wang X, Wang Y, Zhao C, Zhang L. Strengthening of clay brick masonry wall with spraying polyurea for repeated blast resistance. Structures. 2023;53:1069-91.
  • 5. Goswami A, Ganesh T, Adhikary SD. RC structures subjected to combined blast and fragment impact loading: a state-of-the-art review on the present and the future outlook. Int J Impact Eng. 2022;170:104355.
  • 6. Peyman S, Eskandari A. Analytical and numerical study of concrete slabs reinforced by steel rebars and perforated steel plates under blast loading. Results Eng. 2023;19:101319.
  • 7. Yuan P, Xu S, Liu J, Su Y, Li J, Qu K, Liu C, Wu C. Experimental investigation of G-HPC-based sandwich walls incorporated with metallic tube core under contact explosion. Arch Civ Mech Eng. 2022;22(4):155.
  • 8. Yang S, Ning J, Xu X. Fragment theoretical model of concrete blocks subjected to blast loads. Int J Impact Eng. 2023;176:104562.
  • 9. Yue Z, Zhou J, Wang P, Kong X, Zhou Y, Chen Y, Song X, Feng F. Experimental study on the anti-blast performance of polyurea reinforced concrete arch structures. J Build Eng. 2023;77:107483.
  • 10. Li Y, Aoude H. Effects of stainless steel reinforcement and fibers on the flexural behaviour of high-strength concrete beams subjected to static and blast loading. Eng Struct. 2023;291:116398.
  • 11. Ziya-Shamami M, Babaei H, Mostofi TM, Khodarahmi H. Structural response of monolithic and multi-layered circular metallic plates under repeated uniformly distributed impulsive loading: an experimental study. Thin-Walled Struct. 2020;157:107024.
  • 12. Zhou Y, Ji C, Long Y, Yu Y, Li Y, Wang T. Experimental studies on the deformation and damage of steel cylindrical shells subjected to double-explosion loadings. Thin-Walled Struct. 2018;127:469-82.
  • 13. Rezasefat M, Mirzababaie Mostofi T, Ozbakkaloglu T. Repeated localized impulsive loading on monolithic and multi-layered metallic plates. Thin-Walled Struct. 2019;144:106332.
  • 14. Kiakojouri F, Sheidaii MR. Numerical analysis of steel I-core sandwich panels subjected to multiple consecutive blast scenarios. Iran J Sci Technol Trans Civ Eng. 2019;43:371-82.
  • 15. Mudragada R, Bhargava P. Effect of masonry infill on the response of reinforced concrete frames subject to in-plane blast loading. Structures. 2023;57:105317.
  • 16. Yang F, Ke Z, Feng W, Li X, Chen S, Li H. Effects of crumb rubber particles on the dynamic response of reinforced concrete beams subjected to blast loads. Eng Struct. 2024;300:117181.
  • 17. Cheng L, Ji C, Gao F, Yu Y, Long Y, Zhou Y. Deformation and damage of liquid-filled cylindrical shell composite structures subjected to repeated explosion loads: experimental and numerical study. Compos Struct. 2019;220:386-401.
  • 18. Behtaj M, Babaei H, Mostofi TM. Repeated uniform blast loading on welded mild steel rectangular plates. Thin-Walled Struct. 2022;178:109523.
  • 19. Yuan P, Xiang H, Xu S, Liu J, Su Y, Qu K, Wu C. Experimental and numerical study of steel wire mesh reinforced G-HPC slab protected by UHMWPE FRC under multiple blast loadings. Eng Struct. 2023;275:115224.
  • 20. Xu Y, Huang F, Liu Y, Yan J, Bai F, Yu H, Wang B, Wang J. Effect of close-in successive explosions on the blast behaviors of reinforced concrete beams: an experimental study. Structures. 2023;53:29-46.
  • 21. Zhang Y, Fang Q, Chen L, Liu J. Blast-resistant properties of reinforced concrete and steel beams subjected to multiple blast loads. Acta Armamentarii. 2009;30:182-7.
  • 22. Wang Y, Chen J, Zhai X, Zhi X, Zhou H. Static behaviours of steel-concrete-steel sandwich beams with novel inter-locked angle connectors: Test and analysis. J Constr Steel Res. 2023;201:107723.
  • 23. Alberdi R, Przywara J, Khandelwal K. Performance evaluation of sandwich panel systems for blast mitigation. Eng Struct. 2013;56:2119-30.
  • 24. Chordiya YM, Goel MD, Matsagar VA. Sandwich panels with honeycomb and foam cores subjected to blast and impact load: a revisit to past work. Arch Comput Methods Eng. 2023;30(4):2355-81.
  • 25. Ma X, Li X, Li S, Li R, Wang Z, Wu G. Blast response of gradient honeycomb sandwich panels with basalt fiber metal laminates as skins. Int J Impact Eng. 2019;123:126-39.
  • 26. Zhang P, Liu J, Cheng Y, Hou H, Wang C, Li Y. Dynamic response of metallic trapezoidal corrugated-core sandwich panels subjected to air blast loading - an experimental study. Mater Des. 2015;65:221-30.
  • 27. Xia ZC, Wang XH, Fan HL, Li YC, Jin FN. Blast resistance of metallic tube-core sandwich panels. Int J Impact Eng. 2016;97:10-28.
  • 28. Abbas A, Adil M, Ahmad N, Ahmad I. Behavior of reinforced concrete sandwiched panels (RCSPs) under blast load. Eng Struct. 2019;181:476-90.
  • 29. Yuen SCK, Cunliffe G, du Plessis MC. Blast response of cladding, sandwich panels with tubular cores. Int J Impact Eng. 2017;110:266-78.
  • 30. Vaziri A, Hutchinson JW. Metal sandwich plates subject to intense air shocks. Int J Solids Struct. 2007;44(6):2021-35.
  • 31. Huang W, Fan Z, Zhang W, Liu J, Zhou W. Impulsive response of composite sandwich structure with tetrahedral truss core. Compos Sci Technol. 2019;176:17-28.
  • 32. Zhou TY, Zhang P, Xiao W, Liu J, Cheng YS. Experimental investigation on the performance of PVC foam core sandwich panels under air blast loading. Compos Struct. 2019;226:111081.
  • 33. Cai SP, Liu J, Zhang P, Li CP, Cheng YS. Dynamic response of sandwich panels with multi-layered aluminum foam/Check for UHMWPE laminate cores under air blast loading. Int J Impact Eng. 2020;138:103475.
  • 34. Prabowo AR, Thang Do Q, Cao B, Bae DM. Land and marine-based structures subjected to explosion loading: a review on critical transportation and infrastructure. Proc Struct Integr. 2020;27:77-84.
  • 35. Zhang C, Gholipour G, Mousavi AA. Blast loads induced responses of RC structural members: state-of-the-art review. Compos B Eng. 2020;195:108066.
  • 36. Xu SC, Yuan PC, Liu J, Pan ZP, Liu ZX, Su Y, Li J, Wu CQ. Development and preliminary mix design of ultra-high-performance concrete based on geopolymer. Constr Build Mater. 2021;308:125110.
  • 37. Kong X, Fang Q, Chen L, Wu H. A new material model for concrete subjected to intense dynamic loadings. Int J Impact Eng. 2018;120:60-78.
  • 38. Li J, Wu CQ, Hao H, Su Y. Experimental and numerical study on steel wire mesh reinforced concrete slab under contact explosion. Mater Des. 2017;116:77-91.
  • 39. Lee EL, Hornig HC, Kury JW. Adiabatic expansion of high explosive detonation products, UCRL-50422. California: University of California; 1968.
  • 40. LSTC. LS-DYNA Keyword user’s manual, Volume II-Material Models. LSTC, Livermore, CA, USA. 2015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff816223-6f49-4815-9525-66987cd54d9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.