Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Badania efektywności procesu UV/H2O2 w usuwaniu barwnika Acid Green 16 z roztworów wodnych: optymalizacja procesu i ocena toksyczności
Języki publikacji
Abstrakty
The effects of the removal of Acid Green 16 (100 mg AG-16/dm3, COD=111 mg O2/dm3) from aqueous solutions by the UV/H2O2 process in UV reactors: low pressure lamp (LP, 15W) and medium pressure lamps (MP, 150W) are presented. The best results of AG-16 removal were obtained for H2O2 250 mg/dm3 (99.85%, AG-16=0.15 mg/dm3) and 200 mg/dm3 (99.80%, AG-16=0.20 mg/dm3) for LP and MP lamps, respectively, with the same parameters, i.e. 30 min reaction time and pH 6. Under these conditions, the AG-16 solution was completely discolored and the COD removal efficiency was 57.3% (LP lamp) and 63,4% (MP lamp). However, at optimum conditions of decolorisation, no decrease in the toxicity of solutions (Microtox test) was observed. For the MP lamp, the toxicity of solutions remained at the same level as in the initial solutions (Toxicity Unit, TU=3), whereas in the case of the LP lamp, the TU value after the process increased to 6. In conclusion, the AOPs for toxic pollutants should also be optimised from the point of view of toxicity.
Przedstawiono efekty usuwania barwnika Acid Green 16 (100 mg AG-16/dm3, ChZT=110.9 mg O2/dm3) z roztworów wodnych metodą UV/H2O2 z zastosowaniem dwóch reaktorów UV: z lampą niskociśnieniową (LP, 15W) i średniociśnieniową (MP, 150W). Najlepsze efekty usunięcia AG-16 uzyskano dla H2O2 250 mg/dm3 (99.85%, AG-16=0.15 mg/dm3) i 200 mg/dm3 (99.80%, AG-16=0.20 mg/dm3) odpowiednio dla lamp LP i MP przy tych samych pozostałych parametrach, tj. czasie reakcji 30 min i pH 6. W tych warunkach uzyskano całkowite odbarwienie roztworów barwnika AG-16, a obniżenie wartości ChZT wynosiło 57.3% (lampa LP) i 63,4% (lampa MP). Dla wyznaczonych optymalnych warunków dekoloryzacji roztworów AG-16 ich toksyczność (Microtox test) nie uległa obniżeniu. Dla lampy MP toksyczność pozostała na tym samym poziomie jak roztworów wyjściowych (Jednostka Toksyczności, TU=3), natomiast w przypadku lampy LP wartość TU wzrosła do 6. Wynika z tego, że procesy AOPs dla zanieczyszczeń toksycznych powinny być optymalizowane także z uwzględnieniem analizy toksyczności.
Czasopismo
Rocznik
Strony
103--107
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Silesian University of Technology, Institute of Water and Wastewater Engineering, Gliwice, Poland
autor
- Silesian University of Technology, Institute of Water and Wastewater Engineering, Gliwice, Poland
autor
- Silesian University of Technology, Institute of Water and Wastewater Engineering, Gliwice, Poland
autor
- Silesian University of Technology, Environmental Biotechnology Department, Gliwice, Poland
autor
- Chemiqua Company, Kraków, Poland
autor
- Chemiqua Company, Kraków, Poland
Bibliografia
- 1. Kyzioł-Komosińska J, Rosik-Dulewska C, Pająk M, Czupioł J, Dzieniszewska A, Krzyżewska I. Sorption of Acid Green 16 from Aqueous Solution onto Low-moor Peat and Smectite Clay Co-occurring in Lignite of Belchatow Mine Field. Annual Set The Environment Protection, 2015; 17: 165-187.
- 2. Meroufel B, Benali O, Benyahia M, Benmoussa Y, Zenasni M A. Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: Characteristics, isotherm, kinetic and thermodynamic studies. Journal of Materials and Environmental Science, 2013; 4(3): 482491.
- 3. Lima de R O A, Bazo A P, Salvadori D M F, Rech C M, Oliveira D P, Umbuzeiro G A. Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source, Mutation Research 2007; 626: 53-60.
- 4. Zawadzka M, Barański B, Wiśniewska-Knypl J, Wrońska-Nofer T. Genotoxic effect of triarylmethane dye-acid green 16 after chronic ethanol consumption in mice. Polish Journal of Occupational Medicine and Environmental Health 1993; 6(4): 391-397.
- 5. Balik O Y, Aydin S. Coagulation/Flocculation optimization and sludge production for pretreatment of paint industry wastewater, Desalination and Water Treatment 2016; 57: 1269212699.
- 6. Robinson T, Chandran B, Nigam P. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw, Water Research, 2002; 36(11): 2824-2830.
- 7. Shaobin W, Huiting L, Sujuan X, Shenglin L, Longya X. Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment Chemosphere 2006; 65(1): 82-87.
- 8. Barbusiński K, Salwiczek S, Zdebik D. Use of chitosan and its modifications for removal of reactive dyes from aqueous solutions. Przemysł Chemiczny 2015; 94(12): 2184-2187.
- 9. Wawrzkiewicz M. Application of various sorbents in the process of removing dyes from aqueous solutions and industrial wastewater. Przemysł Chemiczny 2012; 91(1): 45-52.
- 10. Hassani A H, Mirzayee R, Nasseri S, Borghei M, Gholami M, Torabifar B. Nanofiltration process on dye removal from simulated textile wastewater. International Journal of Environmental Science and Technology 2008; 5(3): 401-408.
- 11. Abid M F, Zablouk M A, Abid-Alameer A M. Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration, Iranian Journal of Environmental Health Science & Engineering 2012; 9(1): 17-26.
- 12. Argun M E, Karatas M. Application of Fenton process for decolorization of Reactive Black 5 from synthetic wastewater: kinetics and thermodynamics. Environmental Progress & Sustainable Energy 2011; 30(4): 540-548.
- 13. Polat D, Tulay I B, Ozbelge A. Catalytic ozonation of an industrial textile wastewater in a heterogeneous continuous reactor. Journal of Environmental Chemical Engineering 2015; 3(3): 1860-1871.
- 14. Dinarvand M. Decolorized of textile dye waste waters by hydrogen peroxide, UV and sunlight. International Journal of ChemTech Research 2014; 6(2): 985-990.
- 15. Shu H Y, Hsieh W P. Treatment of dye manufacturing plant effluent using an annular UV/H2O2 reactor with multi-UV lamps. Separation and Purification Technology 2006; 51(3): 379-386.
- 16. Shu H Y, Chang M C, Hsieh W P. Decolorization and mineralization of a phthalocyanine dye C.I. Direct Blue 199 using UV/H2O2 process. Journal of Hazardous Materials 2005; 125(1-3): 96-101.
- 17. Nanwen Z, Lin G, Haiping Y, Ziyang L, Liang W, Xin Z. Degradation pathway of the naphthalene azo dye intermediate 1-diazo-2- naphthol-4-sulfonic acid using Fenton's reagent, Water Research 2012; 46: 3859-3867.
- 18. Barbusiński K, Majewski J. Discoloration of azo dye Acid Red 18 by Fenton reagent in the presence of iron powder. Polish Journal of Environmental Studies 2003; 12(2): 151-155.
- 19. Ehrampoush M H, Moussavi G H R, Ghaneian M T, Rahimi S, Ahmadian M. Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process. Iranian Journal of Environmental Health Science & Engineering, 2011; 8(1): 35-40.
- 20. Rahmani A R, Zarrabi M, Samarghandi M R, Afkhami A, Ghaffari1 H R. Degradation of Azo Dye Reactive Black 5 and Acid Orange 7 by Fenton-Like Mechanism. Iranian Journal of Chemical Engineering 2010; 7(1): 87-94.
- 21. Barbusiński K. Modification of Fenton reaction using calcium and magnesium peroxides (in Polish). Monograph, Central Mining Institute, Katowice 2006.
- 22. Pieczykolan B, Płonka I, Barbusiński K. Discoloration of dye wastewater by modified UVFenton process with sodium percarbonate. Architecture Civil Engineering Environment, ACEE 2016; 4: 135-140.
- 23. Solecka M, Ledakowicz S. Biological treatment of coloured textile wastewater, (in Polish) Biotechnologia 2005; 2 (69): 103-124.
- 24. Willmott N, Guthrie J, Nelson G. The biotechnology approach to colour removal from textile effluent. Journal Society of Dyers and Colourists 1998; 114: 38-41.
- 25. Ledakowicz S, Solecka M, Zylla R. Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. Journal of Biotechnology, 2001; 89: 175-184.
- 26. Pfaltz & Bauer, Safety Data Sheet, Prepared: 3/10/2017, www.pfaltzandbauer.com
- 27. PN-EN ISO 10523:2012 Water Quality. Determination of pH.
- 28. PN-ISO 15705:2005 Water quality. Determination of the chemical oxygen demand index (ST-COD). Small-scale sealed-tube method.
- 29. Kang Y W, Cho M J, Hwang K Y. Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Research 1999; 33: 1247-1251.
- 30. BN-89/6191-04 Chemical reagents. Hydrogen peroxide about 30% (m/m), solution.
- 31. PN-EN ISO 11348-3:2008 Water quality. Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test). Method using freeze-dried bacteria.
- 32. Persoone G, Marsalek B, Blinova I, Törökne A, Zarina D, Manusadzianas L, Nalecz-Jawecki G, Tofan L, Stepanova N, Tothova L, Kolar B, A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environmental Toxicology 2003; 18: 395-402.
- 33. Plahuta M, Tišler T, Toman M J, Pintar A. Efficiency of advanced oxidation processes in lowering bisphenol A toxicity and oestrogenic activity in aqueous samples. Arh Hig Rada Toksikol 2014; 65(1): 77-87.
- 34. Papić S, Peternel I, Krevzelj Z, Kušić H, Koprivanac N. Advanced oxidation of an azo dye and its synthesis intermediates in aqueous solution: effect of Fenton treatment on mineralization, biodegradability and toxicity. Environmental Engineering and Management Journal 2014; 13(10): 2561-2571.
- 35. Barbusiński K. Toxicity of industrial wastewater treated by Fenton’s reagent. Polish Journal of Environmental Studies 2005; 14(1): 11-16.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff7d9d28-67bd-450f-8e92-a904c9c7719d