PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal analytical winding size optimization for different conductor shapes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to derive an analytical equations for the temperature dependent optimum winding size of inductors conducting high frequency ac sinusoidal currents. Derived analytical equations are useful designing tool for research and development engineers because windings made of foil, square-wire, and solid-round-wire windings are considered. Temperature dependent Dowell’s equation for the ac-to-dc winding resistance ratio is given and approximated. Thermally dependent analytical equations for the optimum foil thickness, as well as valley thickness and diameter of the square-wire and solid-round-wire windings are derived from approximated thermally dependent ac-to-dc winding resistance ratios. Minimum winding ac resistance of the foil winding and local minimum of the winding ac resistance of the solid-round-wire winding are verified with Maxwell 3D Finite Element Method simulations.
Rocznik
Strony
197--214
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr., wz.
Twórcy
autor
  • ABB Corporate Research Center, DMPC R&D Team Starowislna 13a, 31-038, Kraków
Bibliografia
  • [1] Kazimierczuk M.K., RF Power Amplifiers. John Wiley & Sons, Chichester, UK (2008).
  • [2] Kazimierczuk M.K., Czarkowski D., Resonant Power Converters. 2nd ed. IEEE Press/John Wiley & Sons, New York, NY (2011).
  • [3] Kazimierczuk M.K., Puleswidth Modulated DC-DC power converters. John Wiley & Sons, Chichester, UK (2009).
  • [4] Yu Q., Holmes T.W., Naishadham K., RF equivalent circuit modeling of ferrite core inductors and characterization of core materials. IEEE Trans. Electromagn. Compat. 44(1): 258-262 (2002).
  • [5] Huang R.F., Zhang D.M., Tseng K.-J., Determination of dimension independent magnetic and dielectric properties for MnZn ferrite cores and its EMI applications. IEEE Trans. Electromagn. Compat. 50(3): 597-602 (2008).
  • [6] Naishadham K., Closed-form design formulas for the equivalent circuit characterization of ferrite inductors. IEEE Trans. Electromagnet. Compat. 53(4): 923-932 (2011).
  • [7] Wrobel R., Mellor P.H., Thermal design of a high-energy-density wound components. IEEE Trans. Ind. Electron. 58(9): 4096-4104 (2010).
  • [8] Wrobel R., Mlot A., Mellor P.H., Contribution of end-winding proximity losses to temperature variation in electromagnetic devices. IEEE Trans. Ind. Electron. 59(2): 848-857 (2011).
  • [9] Dowell P.L., Effects of eddy currents in transformer winding. Proc. IEE 113(8): 1387-1394 (1966).
  • [10] Snelling E.C., Soft Ferrites, Properties and Applications. 2nd ed. London, U.K.:Butterworth (1988).
  • [11] Kutkut N.H., A simple technique to evaluate winding losses including two-dimensional edge effect. IEEE Applied Power Electronics Conference, Atlanta, Feb. 1997.
  • [12] Kutkut N.H., Divan D.M., Optimal air-gap design in high-frequency foil windings. IEEE Applied Power Electronic Conference, Atlanta (1997).
  • [13] Bartoli M., Reatti A., Kazimierczuk M.K., Modelling iron-powder inductors at high frequencies. IEEE Industry Applications Society Annual Meeting, pp. 1225-1232 (1994).
  • [14] Murthy-Bellur D., Kazimierczuk M.K., Harmonic winding loss in buck DC-DC converter for discontinuous conduction mode. IET, Power Electron. 3(5): 740-754 (2010).
  • [15] Kondrath N., Kazimierczuk M.K., Inductor winding loss owing to skin and proximity effects including harmonics in non-isolated pulse-width modulated dc-dc converters operating in continuous conduction mode. IET, Power Electron. 3(6): 989-1000 (2010).
  • [16] Kazimierczuk M.K., High-Frequency Magnetic Components. John Wiley & Sons, Chichester, UK (2014).
  • [17] Wojda R.P., Kazimierczuk M.K., Winding resistance of litz-wire and multi-strand inductors. IET, Power Electron. 5(2): 257-268 (2012).
  • [18] Wojda R.P., Kazimierczuk M.K., Analytical optimization of solid-round-wire windings. IEEE Trans. Ind. Electron. 60(3): 1033-1041, 2013.
  • [19] Wojda R.P., Kazimierczuk M.K., Magnetic field distribution and analytical optimization of foil windings conducting sinusoidal current. IEEE Magnetics Letters 4 (2013).
  • [20] Koteras D., Calculation of eddy current losses using the electrodynamic similarity laws. Archives of Electrical Engineering 63(1): 107-114 (2014).
  • [21] Budnik K., Machczynski W., Magnetic field of complex helical conductors. Archives of Electrical Engineering 62(4): 533-540 (2013).
  • [22] Strouboulis T., Zhang L., Babuska I., Assessment of the cost and accuracy of the generalized FEM. International Journal for Numerical Methods in Engineering 69(2): 250-283 (2007).
  • [23] Gradzki P.M., Jovanovic M.M., Lee F.C., Computer-aided design for high-frequency power transformer. Annual Applied Power Electronics Conference and Exposition, Los Angeles, CA, USA, 1990, pp. 336-343. (1989).
  • [24] Lotfi A.W., Gradzki P.M., Lee F.C., Proximity effects in coils for high frequency power applications. IEEE Trans. Magn. 28(5): 2169-2171 (1992).
  • [25] Cheng K.W.E., Evans P.D., Calculation of winding losses in high frequency toroidal inductors using single strand conductors. IEE Electr. Power Appl. 141(2): 52-62 (1994).
  • [26] Cheng K.W.E., Evans P.D., Calculation of winding losses in high frequency toroidal inductors using multi-strand conductors. IEE Electr. Power Appl. 142(5): 313-322 (1995).
  • [27] Robert F., Mathys P., Schauwers J-P., Ohmic losses calculation in SMPS transformers numerical study of Dowells approach accuracy. IEEE Trans. Magn. 34(4): 1255-1257 (1998).
  • [28] Pernia A.M., Nuno F., Lopera J.M., 1D/2D transforer electric model for simulation in power converters. 26th Annual IEEE Power Electronics Specialists Conf., Atlanta, GA, USA, June 1995, vol. 2, pp. 1043-1049 (1995).
  • [29] Ayachit A., Kazimierczuk M.K., Thermal effects on inductor winding resistance at high frequencies. IEEE Magnetic Letters 4 (2013).
  • [30] de Gersem H., Hameyer K., A finite element model for foil winding simulation. IEEE Transactions on Magnetics 37(5): 3427-3432 (2001).
  • [31] Wojda R.P., Kazimierczuk M.K., Analytical winding foil thickness optimisation of inductors conducting harmonic currents. IET Power Electronics 6(5): 963 973 (2013).
  • [32] Wojda R.P. Kazimierczuk M.K., Analytical winding size optimisation for different conductor shapes using Ampre’s Law. IET Power Electronics 6(6): 1058-1068 (2013).
  • [33] Wojda R.P., Kazimierczuk M.K., Analytical optimisation of solid-round-wire windings conducting dc and ac non-sinusoidal periodic currents. IET Power Electronics 6(7): 1462-1474 (2013).
  • [34] Wojda R.P., Kazimierczuk M.K., Optimum foil thickness of inductors conducting DC and nonsinusoidal periodic currents. IET Power Electronics 5(6): 801-812 (2012).
  • [35] Wojda R.P., Kazimierczuk M.K., Proximity-effect winding loss in different conductors using magnetic field averaging. COMPEL:The International Journal for Computation and Mathematics in Electrical and Electronic Engineering.
  • [36] Kazimierczuk M. K., Wojda R.P., Foil winding resistance and power loss in individual layers of inductors. Int. J. Electron. Telecommun. 56(3): 237-246 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff791daf-d55c-4659-8fb8-95bf01be9ca5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.