Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Too low an operating speed of trailer air braking systems may lead to an inhibition of the braking asynchrony of agricultural tractor trailer units. Improved braking dynamics advanced braking systems with an electronic control unit (e.g. Trailer EBS) provide a more rational solution for high speed agricultural vehicles. In this paper, an overview of other methods for developing the dynamic properties of air braking systems for agricultural trailers is described. This paper provides an examples of braking system design parameters optimization, using a variety of accelerating valves and dynamic properties correcting devises, also as well, by using simple systems with an electronic controllers. The described methods of dynamic properties improvements can be used to improve the speed and operation synchrony of the air braking systems of low-speed agricultural trailers. The paper presents the influence of some of the described methods, with different levels of complexity, on the properties of typical air braking systems.
Czasopismo
Rocznik
Tom
Strony
5--22
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
- Department of Machinery Design and Thermal Engineering, Faculty of Mechanical Engineering, Białystok University of Technology, Wiejska 45C, Białystok, Poland
autor
- Department of Machinery Design and Thermal Engineering, Faculty of Mechanical Engineering, Białystok University of Technology, Wiejska 45C, Białystok
Bibliografia
- [1] Acarman T., et al. Pneumatic Brake System Modeling for Systems Analysis, SAE Technical Paper 2000-01-3414, 2000, https://doi.org/10.4271/2000-01-3414.
- [2] Aly A., et al. An antilock-braking systems (ABS) control: a technical review’, Intelligent Control and Automation. 2011; Vol. 02, No. 03, pp.186–195, http://dx.doi.org/10.4236/ica.2011.23023.
- [3] Bu F., Tan H.S. Pneumatic brake control for precision stopping of heavy-duty vehicles. IEEE Trans. Control Syst. Technol. 2007, 15, 53–63, https://doi.org/10.1109/TCST.2006.883238.
- [4] CEMA position on the draft Regulation on braking for tractors & the need for a balanced regulatory approach on ABS, http://cema-agri.org/publication/draft-regulation-braking-tractors https://circabc.europa.eu/sd/a/8955da8a-70c5-4d65-83fa-e992e598a883/CEMA%202013%2006%2027%20-%20CEMA%20position%20on%20ABS%20for%20tractors.pdf (Accessed 01.04.2019).
- [5] Commission Delegated Regulation (EU) 2015/68 of 15 October 2014 supplementing Regulation (EU) No 167/2013 of the European Parliament and of the Council with regard to vehicle braking requirements for the approval of agricultural and forestry vehicles. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R0068&from=EN (Accessed 29.06.2018).
- [6] Haldex. Trailer Products Catalogue Europe, 2007, 2008, http://ktdetal.ru/images/articles/files/haldex_catalogue_2008.pdf (Accessed 29.06.2018).
- [7] Han J., et al. Development of a Control Strategy and HIL Validation of Electronic Braking System for Commercial Vehicle, SAE Technical Paper 2014-01-0076, 2014, https://doi.org/10.4271/2014-01-0076.
- [8] Harris, P.G.; O’Donnell, G.E.; Whelan, T. Modelling and identification of industrial pneumatic drive system. Int. J. Adv. Manuf. Technol. 2012, 58, 1075–1086, https://doi.org/10.1007/s00170-011-3447-7.
- [9] Kamiński Z. Simulation and experimental testing of the pneumatic brake systems of agricultural vehicles. Oficyna Wydawnicza Politechniki Bialostockiej, Bialystok, 2012.
- [10] Karthikeyan P., et al. Modelling an electropneumatic brake system for commercial vehicles. IET Electrical Systems in Transportation. 2011 (1): 41-48, http://dx.doi.org/10.1049/iet-est.2010.0022.
- [11] Knorr-Bremse. Commercial Vehicle Systems. Electronic Brake System TEBS G2.1 for Agriculture, https://www. poettinger.at/landtechnik/download/elektronisches-bremssystem_en.pdf (Accessed 29.06.2018).
- [12] Kulesza Z., Siemieniako F. Modeling the air brake system equipped with brake and relay valves. Scientific Journals Maritime University of Szczecin; 2010; 24(96): 5-11.
- [13] Kumar E. A., et al. Performance evaluation of an electro-pneumatic braking system for commercial vehicles, 2012 2nd International Conference on Power, Control and Embedded Systems, Allahabad, 2012, pp. 1-6, https://doi.org/10.1109/ICPCES.2012.6508102.
- [14] Li H., et al. Modeling and Simulation Vehicle Air Brake System. Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011, DOI:10.3384/ecp11063430.
- [15] Metljuk N.F., Avtushko V.P. Dinamika Pnevmaticheskikh Privodov Avtomobilej. Mashinostroenie, Moskva. 1980.
- [16] Miatluk M., Kaminski Z. Brake systems of road vehicles. Calculations, Wydawnictwo Politechniki Bialostockiej, Bialystok. 2005.
- [17] Miller J. I., et al. A high performance pneumatic braking system for heavy vehicles. Vehicle System Dynamics. 2010; 48 (1): 373-392, https://doi.org/10.1080/00423111003774472.
- [18] Miller J., et al. Designing and testing an advanced pneumatic braking system for heavy vehicles. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2013, 227, 1715–1729, https://doi.org/10.1177/0954406212467578.
- [19] Miller J., Cebon D. An investigation of the effects of pneumatic actuator design on slip control for heavy vehicles. Veh. Syst. Dyn. 2013, 51, 139–164, https://doi.org/10.1080/00423114.2012.717703.
- [20] Ming L., et al. Modelling study of the ABS relay valve, Proc. SPIE 7997, Fourth International Seminar on Modern Cutting and Measurement Engineering, 79972K (26 May 2011), https://doi.org/10.1117/12.888337.
- [21] Morrison G., Cebon D. Extremum-seeking algorithms for the emergency braking of heavy goods vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2017; 231 (14): 1961-1977, https://doi.org/10.1177/0954407016689515.
- [22] Natarajan S.V., et al. A model of the relay valve used in an air brake system. Nonlinear Anal. Hybrid Syst. 2007, 1, 430–442, https://doi.org/10.1016/j.nahs.2006.11.003.
- [23] Patil J., et al. Mathematical Model to Evaluate and Optimize the Dynamic Performance of Pneumatic Brake System, SAE Technical Paper 2015-26-0082, https://doi.org/10.4271/2015-26-0082.
- [24] Pronar T654 single axle tipping trailer, http://pronar.pl/en/produkt/pronar-trailer-t654, (Accessed 29.06.2018).
- [25] Pugi L., et al. Parametric library for the simulation of a Union Internationale des Chemins de Fer (UIC) pneumatic braking system. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2004, 218, 117–132, https://doi.org/10.1243/0954409041319632.
- [26] Selvaraj M., et al. Modeling and Simulation of Dynamic Behavior of Pneumatic Brake System at Vehicle Level, SAE Technical Paper 2014-01-2494, 2014, https://doi.org/10.4271/2014-01-2494.
- [27] Subramanian S.C., et al. Modelling the pneumatic subsystem of an S-cam air brake system, Journal of Dynamic Systems, Measurement, and Control, ASME, vol. 126, pp. 36-46, March 2004, http://doi.org/10.1115/1.1666893.
- [28] [TRL Ltd. Project S290B/VD: Braking: Commercial Vehicle Tractor/Trailer Pressure Control - Final Report. PR/SE/205/96. Publication date: 02/01/1997. Unpublished.
- [29] Wabco. Air Braking Systems. Agriculture and Forestry Vehicles. WABCO Europe BVBA, 2013 (edition 9), http://inform.wabco-auto.com/intl/pdf/815/00/82/8150100823.pdf (Accessed 29.06.2018).
- [30] Wabco. EBS Electronically controlled brake systems in motor coatches. System and functional description. Wabco 2003 Version 001/07.010, http://inform.wabco-auto.com/intl/pdf/815/000/408/815_408.pdf, (Accessed 24.03.2019).
- [31] Wang Z., et al. An Experimental Study on Hysteresis Characteristics of a Pneumatic Braking System for a Multi-Axle Heavy Vehicle in Emergency Braking Situations. Appl. Sci. 2017; 7 (8): 799, https://doi.org/10.3390/app7080799.
- [32] Yang F., et al. A New Method for Analysing the Pressure Response Delay in a Pneumatic Brake System Caused by the Influence of Transmission Pipes. Appl. Sci. 2017 (7): 941. https://doi.org/10.3390/app7090941
- [33] Zhang H., et al. Object oriented modelling and simulation of a pneumatic brake system with ABS, 2009 IEEE Intelligent Vehicles Symposium, IEEE, Xi’an, China, pp.780–785, https://doi.org/10.1109/IVS.2009.5164377.
- [34] Zhang R., et al. Advanced emergency braking control based on a nonlinear model predictive algorithm for intelligent vehicles. Appl. Sci. 2017, 7, 504, https://doi.org/10.3390/app7050504.
- [35] Zheng H., Wang, L. Multi-objective stability control algorithm of heavy duty based on EBS. SAE Int. J. Commer. Veh. 2014, 7, 514–519, https://doi.org
Uwagi
EN
Studies have been carried out in the framework of the work No S/WM/1/2018 and financed from the funds for science of MSaHE.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff6daced-9386-4007-96e8-e3c05c8cdf79