Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The operation of a multilayer pressure vessel subjected to thermomechanical loads is very significant. The cylindrical pressure vessel is widely used in industrial engineering: for example, to hold a variety of different types of liquid. On thick-walled cylinders, various loading circumstances such as internal overpressure, external overpressure, heat, bending, twisting, and combinations of these load characteristics are applied. Researchers have developed a number of strategies for enhancing the strength of cylinders, including the use of multilayer cylinders and increasing the thickness of the walls. This paper presents the results of an analytical and numerical analysis of a three-layer cylinder. The Abaqus FEA software is used to determine temperature, displacement, and stress distribution of a multilayer cylinder considering the effect of centripetal and centrifugal heat flow. From the numerical analysis, it is observed that centrifugal heat flux is more hazardous than centripetal heat flux for a multi-layered cylinder under thermo-mechanical loading.
Czasopismo
Rocznik
Tom
Strony
1--6
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Department of Mechanical Engineering, Khulna University of Engineering & Technology, Bangladesh
autor
- Faculty of Mechanical Engineering, Department of Mechanical Engineering, Khulna University of Engineering & Technology, Bangladesh
autor
- Faculty of Mechanical Engineering, Department of Mechanical Engineering, Khulna University of Engineering & Technology, Bangladesh
Bibliografia
- 1. Almasi A., Baghani M., Moallemi A., (2017), “Thermomechanical analysis of hyperelastic thick-walled cylindrical pressure vessels, analytical solutions and FEM”, International Journal of Mechanical Sciences, Vol. 130, pp. 426-436.
- 2. Darijani H., Kargarnovin, M.H. & Naghdabadi, R. (2009). Design of thick-walled cylindrical vessels under internal pressure based on elasto-plastic approach, Materials and Design, Vol. 30 No. 9, pp. 3537-3544.
- 3. Vol. Vasko, T. F. (2014). Stress and deformation analysis of compound cylinders in elastic plastic range [PhD Thesis] University of Osijek.
- 4. Sollund, H. A., Vedeld, K. & Hellesland, J. (2014). Efficient analytical solution for heated and pressurized multi-layer cylinder Ocean Engineering, Vol. 92, pp. 285-295, DOI:10.1016/j.oceaneng.2014.10.003
- 5. Somadder, S. & Islam, M. S. (2018). Stress Analysis of a Cylinder Subjected to Thermomechanical Loads by Using FEM. 4th Intl. Conf. on Structure, Processing and Properties of Materials, SPPM, Bangladesh.
- 6. Q. Zhang, Z. W. Wang, C. Y. Tang, D. P. Hu, P. Q. Liu and L. Z. Xia, (2012), “Analytical solution of the thermo-mechanical stresses in a multilayered composite pressure vessel considering the influence of the closed ends”, International Journal of Pressure Vessels and Piping, Vol. 98, pp. 102-110.
- 7. K. Vedeld, H. A. Sollund and J. Hellesland, (2015), “Closed analytical expressions for stress distributions in two-layer cylinders and their application to offshore lined and clad pipes”, Journal of Offshore Mechanics and Arctic Engineering, Vol. 137, Issue 2 PP. 021702-0217029.
- 8. Aksoy S., Kurşun A., Çetin E., Haboğlu R. M., (2014), “Stress Analysis of Laminated Cylinders Subject to the Thermomechanical Loads” International Journal of Aerospace and Mechanical Engineering, Volume 8, Issue 2.
- 9. Tokovyy V. Y., Ma C. C., (2011), “Analysis of residua stresses in a long hollow cylinder”, International Journal of Pressure Vessels and Piping”, Vol. 88, pp. 248-255.
- 10. Palekar A., Kompelli P., Mayekar N., Shembekar A., Kurane R., Mahatale R., Bharadwaj S., (2016), “Study and design of shell of multi wall pressure vessel” International Journal of Technical Research and Applications, Volume 4, Issue 3, pp. 436-443.
- 11. Raparla S. K., Seshaiah T., (2012), “Design and analysis of multilayer high pressure vessels”, International Journal of Engineering Research and Applications, Vol. 2, Issue 1, pp. 355-361.
- 12. Abdelsalam R. O., (2019), “Design optimization for a three-layers shrink-fitted pressure vessel exposed to very high pressure”, 18th International Conference on Aerospace Sciences & Aviation Technology, IOP Conf. Series: Materials Science and Engineering 610 012077, doi:10.1088/1757-899X/610/1/012077
- 13. Kandil A., El-Baghdady A, and El-shenawy M., (2013), “Analytical and Finite Element Stress Analysis of Pressure Vessels under Constant and Cyclic Loading”, Port said engineering research journal, Vol. 17, Issue 2, pp. 1-11.
- 14. Satyanarayana I., Praveena K., (2016), “Design and Analysis of the Pressure Vessel by using FEM”, International Journal of Innovative Science, Engineering & Technology, Vol.3, Issue 10, pp. 145-150.
- 15. Babaei H., Malakzadeh M., Asgari H., (2015), “Stress Analysis of Gun Barrel Subjected to Dynamic Pressure”, International Journal of Mechanical Engineering and Applications, Vol. 3, Issue 4, pp. 71-80.
- 16. Das P. and Islam, M. S., (2019), “Structural analysis of a thick-walled pressure vessel using FEM”, Journal of Engineering Science, Vol. 10, Issue 2, pp. 69-78.
- 17. Elgohary H. M., El-Geuchy I. M., Abdallah H. M., and Sayed S. S., (2021), “Stress analysis of multi-layered composite cylinders subjected to various loadings, IOP Conf. Series: Materials Science and Engineering, 1172 012005, doi:10.1088/1757-899X/1172/1/012005
- 18. Timoshenko, S.P., Goodier, J.N., 1951. Theory of Elasticity. McGraw-Hill, New York, NY.
- 19. Bahoum, K. & Dinay (2017). Stress analysis of compound cylinders subjected to thermo-mechanical loads. Journal of Mechanical Science and Technology, Vol. 31, No. 4, pp. 1805-1811.
- 20. Shildip D. U., Bhope, D. V. & Khamankar, S. D. (2015). Stress analysis of multilayer pressure vessel, Journal of Applied Mechanical Engineering, Vol. 4, No. 2, pp. 1-6.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff641ee8-18de-4bf6-a8c0-d06af3166cb0