PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microbial and chemical quality assessment of the small rivers entering the South Baltic. Part 1, Case study on the watercourses in the Baltic Sea catchment area

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The area of the Coastal Landscape Park (CLP) due to its location is extremely attractive touristic area. In the summer season, a significant increase in population density is observed, which influences surface water quality. Large numbers of tourists generate an increased amount of municipal wastewater, being treated in local treatment plants and discharged into rivers and streams. The paper presents preliminary research from summer 2016 on three watercourses ending in the Baltic Sea: Piaśnica, Karwianka and Czarna Wda rivers. It is a part of a long-term project conducted in CLP to assess surface waters quality. The scope of research included measurements of in situ parameters (temperature, conductivity, pH, dissolved oxygen). Chemical Oxygen Demand was determined using a spectrophotometer. Ion chromatography was used to determine ions concentrations (including biogenic compounds). Sanitary state of watercourses was assessed based on fecal coliforms abundance, which number was determined by the cultivation method. The determination of microbiological parameters such as: prokaryotic cell abundance expressed as total cells number (TCN), prokaryotic cell biovolume expressed as average cell volume (ACV), the prokaryotic biomass (PB) and prokaryotic cell morphotype diversity was determined using epifluorescence microscopy method. Results showed that water quality of Piaśnica and Czarna Wda rivers were affected by discharged treated wastewater. In the case of Karwianka River, the main pollution source could be surface runoff from fields and unregulated sewage management in this area. The conducted research confirmed the urgent need for better protection of this area to conserve both its ecosystem and value for tourism.
Rocznik
Strony
55--73
Opis fizyczny
Bibliogr. 61 poz., mapka, fot., rys., tab., wykr.
Twórcy
  • Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
  • Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
autor
  • Department of Analytical Chemistry, Faculty of Chemistry,Gdansk University of Technology, Gdansk, Poland
  • EkoTech Center, Gdansk University of Technology, Gdansk, Poland
  • Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
autor
  • Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
  • Costal Landscape Park, Wladyslawowo, Poland
  • Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
  • EkoTech Center, Gdansk University of Technology, Gdansk, Poland
Bibliografia
  • 1. Amin, A., Ahmed, I., Salam, N., Kim, B.Y., Singh, D., Zhi, X.Y., Xiao, M. & Li, W.J. (2017). Diversity and Distribution of Thermophilic Bacteria in Hot Springs of Pakistan. Microbial Ecology, 74 (1), pp. 116-127. DOI: 10.1007/s00248-017-0930-1
  • 2. APHA (2005). Standard methods for the examination of water and wastewater. In 21st ed. Washington DC, USA.
  • 3. Baczkowska, E., Kalinowska, A., Ronda, O., Jankowska, K., Bray, R., Płóciennik, B. & Polkowska, Ż. (2022). Microbial and chemical quality assessment of the small rivers entering the South Baltic. Part II: Case study on the watercourses in the Puck Bay catchment area. Archives of Environmental Protection. (under review)
  • 4. Becerra-Castro, C., Macedo, G., Silva, A.M.T., Manaia, C.M. & Nunes, O.C. (2016). Proteobacteria become predominant during regrowth after water disinfection. Science of the Total Environment, 573, pp. 313-323. DOI: 10.1016/j.scitotenv.2016.08.054
  • 5. Borkowski, R. (2019). Wyzwania i zagrożenia dla turystyki na Półwyspie Helskim w XXI wieku. Bezpieczeństwo. Teoria i Praktyka, 3, pp. 55-70. DOI: 10.34697/2451-0718-b. (in Polish)
  • 6. Brysiewicz, A., Bonisławska, M., Czerniejewski, P. & Kierasiński, B. (2019). Quality analysis of waters from selected small watercourses within the river basins of Odra river and Wisła river. Rocznik Ochrona Srodowiska, 21(2), pp. 1202-1216. (in Polish)
  • 7. Bugajski, P. & Satora, S. (2009). Bilans ścieków dopływających i dowożonych do oczyszczalni na przykładzie wybranego obiektu. Infrastruktura i Ekologia Terenów Wiejskich, 5, pp. 73-82. (in Polish)
  • 8. Cai, L. & Zhang, T. (2013). Detecting human bacterial pathogens in wastewater treatment plants by a high-throughput shotgun sequencing technique. Environmental Science and Technology, 47(10), pp. 5433-5441. DOI: 10.1021/es400275r
  • 9. Caruso, G., La Ferla, R., Azzaro, M., Zoppini, A., Marino, G., Petochi, T., Corinaldesi, C., Leonardi, M., Zaccone, R., Fonda, S., Caroppo, C., Monticelli, L., Azzaro, F., Decembrini, F., Maimone, G., Cavallo, R., Stabili, L., Todorova, N., Karamfilov, V. & Danovaro, R. (2016). Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European marine strategy framework directive. Critical Reviews in Microbiology, 42(6). DOI: 10.3109/1040841X.2015.1087380
  • 10. Chien, A.C., Hill, N.S. & Levin, P.A. (2012). Cell size control in bacteria. Current Biology, 22(9), R340-R349. DOI: 10.1016/j.cub.2012.02.032
  • 11. Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., Lancelot, C. & Likens, G.E. (2009). Ecology - Controlling eutrophication: Nitrogen and phosphorus. In Science (Vol. 323, Issue 5917, pp. 1014-1015). American Association for the Advancement of Science. DOI: 10.1126/science.1167755
  • 12. Council of Ministers, 2011: Rozporządzenia Ministra Środowiska z dnia 9 listopada 2011 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego jednolitych części wód powierzchniowych, (2011) (testimony of (Dz. U. poz. 1549, zał 6). (in Polish)
  • 13. Council of Ministers, 2014: Rozporządzenie Ministra Środowiska z dnia 22 października 2014 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych, (2014) (testimony of Dz.U.2014 poz.1482). (in Polish)
  • 14. Council of Ministers, 2015: Rozporządzenie Ministra Zdrowia z dnia 3 lipca 2015 r. zmieniające rozporządzenie w sprawie prowadzenia nadzoru nad jakością wody w kąpielisku i miejscu wykorzystywanym do kąpieli, 1 (2015) (testimony of Dz.U. 2015. poz. 1510). (in Polish)
  • 15. Council of Ministers, 2016a: Rozporządzenie Ministra Środowiska z dnia 21 lipca 2016 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych., (2016) (testimony of Dz.U.2016 poz.1187). (in Polish)
  • 16. Council of Ministers, 2016b: Rozporządzenie Rady Ministrów z dnia 18 października 2016 r. w sprawie Planu gospodarowania wodami na obszarze dorzecza Wisły, (2016) (testimony of Dz.U. 2016 poz.1991). (in Polish)
  • 17. Council of Ministers, 2016c: Rozporządzenie Rady Ministrów z dnia 18 października 2016 r. w sprawie planu gospodarowania wodami na obszarze dorzecza Wisły, (2016) (testimony of Dz.U. 2016 poz. 1911). (in Polish)
  • 18. Council of Ministers, 2019: Rozporządzenie Ministra Zdrowia z dnia 17 stycznia 2019 r. w sprawie nadzoru nad jakością wody w kąpielisku i miejscu okazjonalnie wykorzystywanym do kąpieli, (2019) (testimony of Dz.U. 2019 poz. 255). (in Polish)
  • 19. Council of Ministers, 2021: Rozporządzenie Ministra Infrastruktury z dnia 25 czerwca 2021 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm, (2021) (testimony of Dz.U. 2021 poz. 1475). (in Polish)
  • 20. Curr, R.H.F., Koh, A., Edwards, E., Williams, A.T. & Davies, P. (2000). Assessing anthropogenic impact on Mediterranean sand dunes from aerial digital photography. Journal of Coastal Conservation, 6(1), pp. 15-22. DOI: 10.1007/BF02730463
  • 21. De Brauwere, A., Ouattara, N.K., & Servais, P. (2014). Modeling fecal indicator bacteria concentrations in natural surface waters: A review. Critical Reviews in Environmental Science and Technology, 44(21), pp. 2380-2453. DOI: 10.1080/10643389.2013.829978
  • 22. de la Vega, C., Schückel, U., Horn, S., Kröncke, I., Asmus, R. & Asmus, H. (2018). How to include ecological network analysis results in management? A case study of three tidal basins of the Wadden Sea, south-eastern North Sea. Ocean and Coastal Management, 163(May), pp. 401-416. DOI: 10.1016/j.ocecoaman.2018.07.019
  • 23. Dodds, W.K. & Smith, V.H. (2016). Nitrogen, phosphorus, and eutrophication in streams. Inland Waters, 6(2), pp. 155-164. DOI: 10.5268/IW-6.2.909
  • 24. Drury, B., Rosi-Marshall, E. & Kelly, J.J. (2013). Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Applied and Environmental Microbiology, 79(6), pp. 1897-1905. DOI: 10.1128/AEM.03527-12
  • 25. Fry, J.C. (1990). Direct Methods and Biomass Estimation. In Grigorova, R. & Norris J.R.B.T.-M. (Eds.), Techniques in Microbial Ecology (Vol. 22, pp. 41-85). Academic Press. DOI: 10.1016/S0580-9517(08)70239-3
  • 26. García-Llorente, M., Harrison, P.A., Berry, P., Palomo, I., Gómez- =Baggethun, E., Iniesta-Arandia, I., Montes, C., García del Amo, D. & Martín-López, B. (2018). What can conservation strategies learn from the ecosystem services approach? Insights from ecosystem assessments in two Spanish protected areas. Biodiversity and Conservation, 27(7), pp. 1575-1597. DOI: 10.1007/s10531-016-1152-4
  • 27. Gössling, S., Hall, C.M. & Scott, D. (2018). Coastal and Ocean Tourism. Handbook on Marine Environment Protection, pp. 773-790. DOI: 10.1007/978-3-319-60156-4_40
  • 28. Grabic, J., Duric, S., Ciric, V. & Benka, P. (2018). Water quality at special nature reserves in Vojvodina, Serbia. Croatian Journal of Food Science and Technology, 10(2), pp. 179-184. DOI: 10.17508/cjfst.2018.10.2.05
  • 29. Hachich, E.M.; Di Bari, M.; Christ, A.P.G.; Lamparelli, C.C.; Ramos, S.S.& Sato, M.I.Z. (2012) Comparison of thermotolerant coliforms and Escherichia coli densities in freshwater bodies. Brazilian J. Microbiol., 43, pp. 675-681.
  • 30. Huo, Y., Bai, Y. & Qu, J. (2017). Unravelling riverine microbial communities under wastewater treatment plant effluent discharge in large urban areas. Applied Microbiology and Biotechnology, 101(17), pp. 6755-6764. DOI: 10.1007/s00253-017-8384-4
  • 31. Infoeko, 2004: Available online: http://www.infoeko.pomorskie.pl/InformacjeZbiorcze/2004/Szczegoly/26. Accessed on 20 October 2020. (in Polish)
  • 32. Johnston, E.L. & Roberts, D.A. (2009). Contaminants reduce the richness and evenness of marine communities: A review and meta-analysis. Environmental Pollution, 157(6), pp. 1745-1752. DOI: 10.1016/j.envpol.2009.02.017
  • 33. Justić, D., Rabalais, N.N., Turner, R.E. & Dortch, Q. (1995). Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 40(3), pp. 339-356. DOI: 10.1016/S0272-7714(05)80014-9
  • 34. Kaczor, G. (2011). Wpływ wiosennych roztopów śniegu na dopływ wód przypadkowych do oczyszczalni ścieków bytowych. Acta Sci. Pol., Formatio Circumiectus, 10(2), pp. 27-34. (in Polish)
  • 35. Kosek, K., Kozak, K., Kozioł, K., Jankowska, K., Chmiel, S. & Polkowska, Z. (2018). The interaction between bacterial abundance and selected pollutants concentration levels in an arctic catchment (southwest Spitsbergen, Svalbard). Science of the Total Environment, 622-623, pp. 913-923. DOI: 10.1016/j.scitotenv.2017.11.342
  • 36. Kosek, K. & Polkowska, Ż. (2016). Determination of selected chemical parameters in surface water samples collected from the Revelva catchment (Hornsund fjord, Svalbard). Monatshefte Fur Chemie, 147(8), pp. 1401-1405. DOI: 10.1007/s00706-016-1771-1
  • 37. Kowalski, T. (1989). Analiza chemicznych i biochemicznych właściwości zanieczyszczeń występujących w ściekach. Ochrona Środowiska. (in Polish)
  • 38. Kozak, K., Ruman, M., Kosek, K., Karasiński, G., Stachnik, Ł. & Polkowska, Z. (2017). Impact of volcanic eruptions on the occurrence of PAHs compounds in the aquatic ecosystem of the southern part of West Spitsbergen (Hornsund Fjord, Svalbard). Water (Switzerland), 9(1). DOI: 10.3390/w9010042
  • 39. Krajewska, Z. & Fac-Beneda, J. (2016). Transport of biogenic substances in water-courses of coastal landscape park. Journal of Elementology, 21(2), pp. 413-423. DOI: 10.5601/jelem.2015.20.1.800
  • 40. Kutyła, S. (2015). Characteristics of water level fluctuations in Polish lakes - a review of the literature. Ochrona Srodowiska i Zasobów Naturalnych, 25(3), pp. 27-34. DOI: 10.2478/oszn-2014-0011
  • 41. la Ferla, R., Maimone, G., Azzaro, M., Conversano, F., Brunet, C., Cabral, A. S. & Paranhos, R. (2012). Vertical distribution of the prokaryotic cell size in the Mediterranean Sea. Helgoland Marine Research, 66(4), pp. 635-650. DOI: 10.1007/s10152-012-0297-0
  • 42. Luczkiewicz, A., Jankowska, K., Bray, R., Kulbat, E., Quant, B., Sokolowska, A. & Olańczuk-Neyman, K. (2011). Antimicrobial resistance of fecal indicators in disinfected wastewater. Water Science and Technology, 64(12), 2352. DOI: 10.2166/wst.2011.769
  • 43. Luczkiewicz, A., Jankowska, K., Langas, V. & Kaiser, A. (2019). Inventory of existing treatment technologies in wastewater treatment plants Case studies in four coastal regions of the South Baltic Sea.
  • 44. Łuczkiewicz, A., Jankowska, K., Fudala-Książek, S. & Olańczuk-Neyman, K. (2010). Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant. Water Research, 44(17), pp. 5089-5097. DOI: 10.1016/j.watres.2010.08.007
  • 45. Majdak, P. (2008). Tourist amenities of Hel and conceptions of their development. Turystyka i Rekreacja Tom 4. (in Polish)
  • 46. Michałkiewicz, M. (2018). Ścieki i ich negatywna rola w środowisku. Technologia Wody, 5(61), pp. 30-33.
  • 47. Munksgaard, D.G. & Young, J.C. (1980). Flow and load variations at wastewater treatment plants. Journal of the Water Pollution Control Federation, 52(8), pp. 2131-2144.
  • 48. Norland S. (1993). The relationship between biomass and volume of bacteria. In Cole, J.J. (Ed.), Handbook of methods in aquatic microbial ecology (pp. 303-308). Lewis Publishers.
  • 49. Nübel, U., Garcia-Pichel, F., Kühl, M. & Muyzer, G. (1999). Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Applied and Environmental Microbiology, 65(2), pp. 422-430.
  • 50. Olańczuk-Neyman, K., Quant, B., Łuczkiewicz, A., Kulbat, E., Jankowska, K., Sokołowska, A., Bray, R. & Kulbat, E. (2015). Dezynfekcja ścieków. Seidel-Przywecki sp. z o.o. (in Polish)
  • 51. Olson, D.M. & Dinerstein, E. (1998). The global 200: A representation approach to conserving the earth’s most biologically valuable ecoregions. Conservation Biology, 12(3), pp. 502-515. DOI: 10.1046/j.1523-1739.1998.012003502.x
  • 52. Ostroumov, S.A. (2017). Water Quality and Conditioning in Natural Ecosystems: Biomachinery Theory of Self-Purification of Water. Russian Journal of General Chemistry, 87(13), pp. 3199-3204. DOI: 10.1134/S107036321713014X
  • 53. Porter, K.G. & Feig, Y.S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnological Oceanography, 25(5), pp. 943-948.
  • 54. Rees, G. & Bartram, J. (2002). Monitoring bathing waters: a practical guide to the design and implementation of assessments and monitoring programmes. CRC Press.
  • 55. Statistics Poland, 2016: Available online: https://stat.gov.pl/obszarytematyczne/ludnosc/ludnosc/ Accessed on 20 October 2020, https://stat.gov.pl/obszary-tematyczne/kultura-turystyka-sport/turystyka/ Accessed on 20 October 2020. (in Polish)
  • 56. Straza, T.R.A., Cottrell, M.T., Ducklow, H.W. & Kirchman, D.L. (2009). Geographic and phylogenetic variation in bacterial biovolume as revealed by protein and nucleic acid staining. Applied and Environmental Microbiology, 75(12), pp. 4028-4034. DOI: 10.1128/AEM.00183-09
  • 57. Świątecki, A. (1997). Zastosowanie wskaźników bakteriologicznych w ocenie wód powierzchniowych. (Monografie). Wyższa Szkoła Pedagogiczna. (in Polish)
  • 58. Trussell, R.R. (1990). Evaluation of the Health Risks Associated with Disinfection. Critical Reviews in Environmental Control, 20(2), pp. 77-113. DOI: 10.1080/10643389009388392
  • 59. Wiskulski, T. (2015). Geography For Society (Issue January 2015). Wojciechowska, E., Pietrzak, S., Matej-Łukowicz, K., Nawrot, N., Zima, P., Kalinowska, D., Wielgat, P., Obarska-Pempkowiak, H., Gajewska, M., Dembska, G., Jasiński, P., Pazikowska-Sapota, G., Galer-Tatarowicz, K. & Dzierzbicka-Głowacka, L. (2019). Nutrient loss from three small-size watersheds in the southern Baltic Sea in relation to agricultural practices and policy. Journal of Environmental Management, 252(May). DOI: 10.1016/j.jenvman.2019.109637
  • 60. Young, K.D. (2006). The Selective Value of Bacterial Shape. Microbiology and Molecular Biology Reviews, 70(3), pp. 660-703. DOI: 10.1128/MMBR.00001-06
  • 61. Zaborska, A., Siedlewicz, G., Szymczycha, B., Dzierzbicka-Głowacka, L. & Pazdro, K. (2019). Legacy and emerging pollutants in the Gulf of Gdańsk (southern Baltic Sea) - loads and distribution revisited. Marine Pollution Bulletin, 139 (November 2018), pp. 238-255. DOI: 10.1016/j.marpolbul.2018.11.060
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff640ecd-7925-40e9-bddb-772fdb5170c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.