PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An analysis and interpretation of the signals in gamma‑absorption measurements of liquid–gas intermittent flow

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The intermittent flow (slug and plug type) of liquid–gas mixtures in a horizontal pipeline measured by the specific radiometric apparatus is presented. The measurement system consists of two sources of Am-241 gamma radiation and two scintillation probes. An analysis of the signals measured by the radiometric equipment is performed in the domain of time and of frequency. Recognised signal parameters are directly referred to physical quantities associated with a liquid–gas flow. The employed methodology enables determination of gas-phase flow velocity and estimation of the average depth and length of bubble gas structures. In the paper, the processing and interpretation results of the selected experiment are presented to show the in-depth description of gas structures and the type of flows recognition.
Czasopismo
Rocznik
Strony
1435--1451
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
autor
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30 Mickiewicz Av., 30‑059 Kraków, Poland
Bibliografia
  • 1. Ameran HLM, Mohamad EJ, Muji SZM et al (2017) Multiphase flow velocity measurement of chemical processes using electrical tomography: a review. In: Proceedings—2016 IEEE international conference on automatic control and intelligent systems, I2CACIS 2016
  • 2. Arkani M, Khalafi H, Vosoughi N, Khakshournia S (2017) Development and experimental validation of a correlation monitor tool based on the endogenous pulsed neutron source technique. Metrol Meas Syst 24:441–461. https://doi.org/10.1515/mms-2017-0043
  • 3. Arvoh BK, Hoffmann R, Halstensen M (2012) Estimation of volume fractions and flow regime identification in multiphase flow based on gamma measurements and multivariate calibration. Flow Meas Instrum 23:56–65. https://doi.org/10.1016/j.flowmeasinst.2011.11.002
  • 4. Banasiak R, Wajman R, Jaworski T, Fiderek P, Fidos H, Nowakowski J, Sankowski D (2014) Study on two-phase flow regime visualization and identification using 3D electrical capacitance tomography and fuzzy-logic classification. Int J Multiphas Flow 58:1–14. https://doi.org/10.1016/j.ijmultiphaseflow.2013.07.003
  • 5. Beck MS, Pląskowski A (1987) Cross-correlation flowmeters. Their design and application. Adam Hilger, Bristol
  • 6. Bendat JS, Piersol AG (2010) Random data. Analysis and measurement procedures, 4th edn. Wiley, New York
  • 7. Biswal J, Pant HJ, Goswami S et al (2018) Measurement of flow rates of water in large diameter pipelines using radiotracer dilution method. Flow Meas Instrum 59:194–200. https://doi.org/10.1016/j.flowmeasinst.2017.12.014
  • 8. Buttkus B (2000) Spectral analysis and filter theory in applied geophysics. Springer, Berlin
  • 9. Chaouki J, Larachi F, Dudukovic M (1997) Non-invasive monitoring of multiphase flows. Elsevier, Amsterdam
  • 10. de Oliveira WR, de Paula IB, Martins FJWA, Farias PSC, Azevedo LFA (2015) Bubble characterization in horizontal air–water intermittent flow. Int J Multiph Flow 69:18–30. https://doi.org/10.1016/j.ijmultiphaseflow.2014.10.014
  • 11. Falcone G, Hewitt GF, Alimonti C (2009) Multiphase flow metering: principles and applications. Elsevier, Amsterdam
  • 12. García JT, Vigueras-Rodriguez A, Castillo LG, Carrillo JM (2017) Evaluation of sulfide control by air-injection in sewer force mains: field and laboratory study. Sustainability 9(3):402. https://doi.org/10.3390/su9030402
  • 13. Gołębiowski T, Porzucek S, Pasierb B (2016) Ambiguities in geophysical interpretation during fracture detection-case study from a limestone quarry (Lower Silesia Region, Poland). Near Surf Geophys 14:371–384. https://doi.org/10.3997/1873-0604.2016017
  • 14. Guide (1995) Guide to the expression of uncertainly in measurement. International Organization for Standardization, Geneva
  • 15. Gulhane NP, Mahulikar SP (2009) Variations in gas properties in laminar micro-convection with entrance effect. Int J Heat Mass Transf 52:1980–1990. https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.037
  • 16. Hanus R (2003) Statistical error analysis of time delay measurement by using phase of cross-spectral density function. Syst Anal Model Simul 43(8):993–998. https://doi.org/10.1080/0232929031000080632
  • 17. Hanus R (2009) The application of the Hilbert transform to correlation measurements of time delay. Prz Elektrotech 85(7):45–48
  • 18. Hanus R (2015) Application of the Hilbert transform to measurements of liquid–gas flow using gamma ray densitometry. Int J Multiph Flow 72:210–217. https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.002
  • 19. Hanus R, Petryka L, Zych M (2014) Velocity measurement of the liquid–solid flow in a vertical pipeline using gamma-ray absorption and weighted cross-correlation. Flow Meas Instrum 40:58–63. https://doi.org/10.1016/j.flowmeasinst.2014.08.007
  • 20. Hanus R, Zych M, Kusy M, Jaszczur M, Petryka L (2018) Identification of liquid–gas flow regime in a pipeline using gamma-ray absorption technique and computational intelligence methods. Flow Meas Instrum 60:17–23. https://doi.org/10.1016/j.flowmeasinst.2018.02.008
  • 21. Heindela TH, Grayb JN, Jensenb TC (2008) An X-ray system for visualizing fluid flows. Flow Meas Instrum 19:67–78. https://doi.org/10.1016/j.flowmeasinst.2007.09.003
  • 22. Jarzyna JA, Krakowska PI, Puskarczyk E, Wawrzyniak-Guz K, Bielecki J, Tkocz K, Tarasiuk J, Wroński S, Dohnalik M (2016) X-ray computed microtomography—a useful tool for petrophysical properties determination. Comput Geosci 20(5):1155–1167. https://doi.org/10.1007/s10596-016-9582-3
  • 23. Jaszczur M, Portela LM (2008) Numerical data for reliability of LES for non-isothermal multiphase turbulent channel flow. In: Meyers J, Geurts B, Sagaut P (eds) Quality and reliability of large-eddy simulations. Springer, New York, pp 343–354. https://doi.org/10.1007/978-1-4020-8578-9_28
  • 24. Johansen G, Jackson P (2004) Radioisotope gauges for industrial process measurements. Wiley, New York
  • 25. Kanizawa FT, Ribatski G (2016) Two-phase flow patterns across triangular tube bundles for air–water upward flow. Int J Multiph Flow 80:43–56. https://doi.org/10.1016/j.ijmultiphaseflow.2015.11.004
  • 26. Knoll GF (2000) Radiation detection and measurement, 3rd edn. Wiley, New York
  • 27. Kowalczyk A, Hanus R, Szlachta A (2011) Investigation of the statistical method of time delay estimation based on conditional averaging of delayed signal. Metrol Meas Syst 17(2):335–342. https://doi.org/10.2478/v10178-011-0015-3
  • 28. Kozłowska M, Orlecka-Sikora B, Rudziński Ł, Cielesta S, Mutke G (2016) A typical evolution of seismicity patterns resulting from the coupled natural, human-induced and coseismic stresses in a longwall coal mining environment. Int J Rock Mech Mini Sci 86:5–15. https://doi.org/10.1016/j.ijrmms.2016.03.024
  • 29. Krakowska P, Puskarczyk E (2015) Tight reservoir properties derived by nuclear magnetic resonance, mercury porosimetry and computed microtomography laboratory techniques Case study of Palaeozoic clastic rocks. Acta Geophys 63(3):789–814. https://doi.org/10.1515/acgeo-2015-0013
  • 30. Kumara WAS, Halvorsen BM, Melaaen MC (2010) Single-beam gamma densitometry of oil-water flow in horizontal and slightly inclined pipes. Int J Multiph Flow 36:467–480. https://doi.org/10.1016/j.ijmultiphaseflow.2010.02.003
  • 31. Kundu S, Kumbhakar M, Ghoshal K (2017) Reinvestigation on mixing length in an open channel turbulent flow. Acta Geophys. https://doi.org/10.1007/s11600-017-0109-7
  • 32. Morgado AO, Miranda JM, Araújo JDP, Campos JBLM (2016) Review on vertical gas–liquid slug flow. Int J Multiph Flow 85:348–368. https://doi.org/10.1016/j.ijmultiphaseflow.2016.07.002
  • 33. Mosorov V (2006a) A method of transit time measurement using twin plane electrical tomography. Meas Sci Technol 17:753–760. https://doi.org/10.1088/0957-0233/17/4/022/meta
  • 34. Mosorov V (2006b) Phase spectrum method for time delay estimation using twin-plane electrical capacitance tomography. Electron Lett 42(11):630–632. https://doi.org/10.1049/iel:20060338
  • 35. Mosorov V (2008) Flow pattern tracing for mass flow rate measurement in pneumatic conveying using twin plane electrical capacitance tomography. Part Part Syst Charact 25(3):259–265. https://doi.org/10.1002/ppsc.200700034
  • 36. Pietsch K, Marzec P, Kobylarski M, Danek T, Leśniak A, Tatarata A, Gruszczyk E (2007) Identification of seismic anomalies caused by gas saturation on the basis of theoretical P and PS wavefield in the Carpathian Foredeep, SE Poland. Acta Geophys 55(2):191–208. https://doi.org/10.2478/s11600-007-0002-x
  • 37. Powell RL (2008) Experimental techniques for multiphase flows. Phys Fluids 20:040605. https://doi.org/10.1063/1.2911023
  • 38. Rahim AR, Yunos MY, Rahiman MHF, Muji SZM, Thiam ChK, Rahim HA (2012) Optical tomography: velocity profile measurement using orthogonal and rectilinear arrangements. Flow Meas Instrum 23:49–55. https://doi.org/10.1016/j.flowmeasinst.2011.10.006
  • 39. Roshani GH, Nazemi E (2017) Intelligent densitometry of petroleum products in stratified regime of two phase flows using gamma ray and neural network. Flow Meas Instrum 58:6–11. https://doi.org/10.1016/j.flowmeasinst.2017.09.007CrossRef
  • 40. Roshani GH, Nazemi E, Roshani MM (2017a) Application of radial basis function in densitometry of stratified regime of liquid–gas two phase flows. Radiat Meas 100:9–17. https://doi.org/10.1016/j.radmeas.2017.03.001
  • 41. Roshani GH, Nazemi E, Roshani MM (2017b) Identification of flow regime and estimation of volume fraction independent of liquid phase density in gas-liquid two-phase flow. Prog Nucl Energy 98:29–37. https://doi.org/10.1016/j.pnucene.2017.02.004
  • 42. Rząsa MR (2009) The measuring method for tests of horizontal two-phase gas–liquid flows, using optical and capacitance tomography. Nucl Eng Des 239:699–707. https://doi.org/10.1016/j.nucengdes.2008.12.020
  • 43. Salgado CM, Pereira C, Schirru R, Brandão LEB (2010) Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks. Prog Nucl Energy 52:555–562. https://doi.org/10.1016/j.pnucene.2010.02.001
  • 44. Sommerlatt H-D, Andruszkiewicz A (2008) Dynamic measurement of particle diameter and drag coefficient using the ultrasonic method. Arch Acoust 33:351–362
  • 45. Szabó NP, Dobróka M (2017) Robust estimation of reservoir shaliness by iteratively reweighted factor analysis. Geophysics 82(2):D69–D83. https://doi.org/10.1190/geo2016-0393.1
  • 46. Tamburini A, Cipollina A, Micale G, Brucato A (2013) Particle distribution in dilute solid liquid unbaffled tanks via a novel laser sheet and image analysis based technique. Chem Eng Sci 87:341–358. https://doi.org/10.1016/j.ces.2012.11.005
  • 47. Vlasak P, Chara Z, Krupicka J, Konfrst J (2014) Experimental investigation of coarse particles-water mixture flow in horizontal and inclined pipes. J Hydrol Hydromech 62(3):241–247. https://doi.org/10.2478/johh-2014-00
  • 48. Vlasak P, Chara Z, Konfrst J (2017) Flow behaviour and local concentration of coarse particles–water mixture in inclined pipes. J Hydrol Hydromech 65(2):183–191. https://doi.org/10.1515/johh-2017-0001
  • 49. Witczak S, Zuber A, Kmiecik E, Kania J, Szczepańska J, Różański K (2009) Tracer based study of the Badenian Bogucice Sands Aquifer, Poland. Nat Groundw Qual. https://doi.org/10.1002/9781444300345.ch15
  • 50. Xue T, Qu L, Cao Z, Zhang T (2012) Three-dimensional feature parameters measurement of bubbles in gas–liquid two-phase flow based on virtual stereo vision. Flow Meas Instrum 27:29–36. https://doi.org/10.1016/j.flowmeasinst.2012.07.007
  • 51. Zeng X, Zhu Z, Chen Y (2016) Remote evaluation of rotational velocity using a quadrant photo-detector and a DSC algorithm. Sensors (Switzerland). https://doi.org/10.3390/s16050587
  • 52. Zhao Y, Qincheng B, Richa H (2013) Recognition and measurement in the flow pattern and void fraction of gaseliquid two-phase flow in vertical upward pipes using the gamma densitometer. Appl Therm Eng 60:398–410. https://doi.org/10.1016/j.applthermaleng.2013.07.006
  • 53. Zych M, Hanus R, Petryka L (2014) Application of spectral analysis in radiometric measurements of two-phase liquid–gas flow. MATEC Web Conf 18:02004. https://doi.org/10.1051/matecconf/20141802004
  • 54. Zych M, Hanus R, Petryka L, Świsulski D, Strzępowicz A, Zych P (2015) Application of gamma densitometry and statistical signal analysis to gas phase velocity measurements in pipeline hydrotransport. EPJ Web Conf 92:02122. https://doi.org/10.1051/epjconf/20159202122
  • 55. Zych M, Hanus R, Jaszczur M, Strzępowicz A, Petryka L, Mastej W (2016) Determination of void fraction in two phase liquid–gas flow using gamma absorption. JPCS 745:032124. https://doi.org/10.1088/1742-6596/745/3/032124
  • 56. Zych M, Hanus R, Vlasák P, Jaszczur M, Petryka L (2017) Radiometric methods in the measurement of particle-laden flows. Powder Technol 318:491–500. https://doi.org/10.1016/j.powtec.2017.06.019
  • 57. Zych M, Hanus R, Jaszczur M, Świsulski D, Petryka L, Jodłowski P, Zych P (2018) Evaluation of the structures size in the liquid–gas flow by gamma-ray absorption. EPJ Web Conf 180:02123. https://doi.org/10.1051/epjconf/201818002123
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff612652-b32a-4cb9-8af9-327c206f82a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.