PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the Concentration and Health Risks of Phosphates and Nitrates of a High Andean River

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In developing countries, river monitoring is very limited. Despite environmental and health problems, there is a paucity of information regarding the contaminants phosphates and nitrates. Thus, concentration and health risks, of phosphates and nitrates of the Ichu river waters, in Huancavelica, Peru, were evaluated. Sampling was carried out at six different points. Important water quality parameters were analyzed, such as pH, temperature, dissolved oxygen (DO) and electric conductivity (EC). The results revealed that the phosphate and nitrate varied between 0.475 to 0.575 mg/L and 11.10 to 14.00 mg/L, respectively. The concentration of phosphates and nitrates was 0.520±0.02 mg/L and 13.10±0.48, respectively. The Ichu River water had the quality that corresponded to its category, when compared to the permitted limits of the Environmental Quality Standards (EQS) for water. It did not present contamination according to the nutrient contamination index and the health risk was from chronic low intake. Besides, it presented a moderate relationship between nitrate and phosphate, due to the low concentration of phosphates during the dry season. What is new about this research is the approach to potential health risks of exposure to nitrates and phosphates, in a high Andean river in Huancavelica, Peru.
Twórcy
  • Faculty of Engineering Sciences,Universidad Nacional de Huancavelica, Avenida Agricultura 319-321, Paturpampa 09001, Peru
  • Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Av. Óscar R. Benavides 5737, Lima 07006, Peru
  • College of Agricultural Engineering, , Water Resources Department Universidad Nacional Agraria La Molina, Lima, Peru
  • Faculty of Engineering Sciences,Universidad Nacional de Huancavelica, Avenida Agricultura 319-321, Paturpampa 09001, Peru
  • Faculty of Engineering Sciences,Universidad Nacional de Huancavelica, Avenida Agricultura 319-321, Paturpampa 09001, Peru
  • Faculty of Engineering Sciences,Universidad Nacional de Huancavelica, Avenida Agricultura 319-321, Paturpampa 09001, Peru
  • Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Av. Óscar R. Benavides 5737, Lima 07006, Peru
  • Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Av. Óscar R. Benavides 5737, Lima 07006, Peru
Bibliografia
  • 1. ANA. 2016. Autoridad Nacional del Agua. Protocolo Nacional de Monitoreo de la calidad de los Recursos Hidricos; Lima, Peru.
  • 2. APHA. 2012. Métodos estándar para el análisis de agua y aguas residuales, 22a edición editada por EW Rice, RB Baird, AD Eaton y LS Clesceri. Asociación Estadounidense de Salud Pública (APHA), Asociación Estadounidense de Obras Hidráulicas (AWWA) y Federación Ambiental del Agua (WEF), Washington, DC, EE. UU.
  • 3. Abd Ellah, R.G. 2020. Physical properties of inland lakes and their interaction with global warming: A case study of Lake Nasser, Egypt. The Egyptian Journal of Aquatic Research, 46(2), 103-115.
  • 4. Agbazue, V., Ekere, N., Shaibua, Y. 2015. Assessment of the levels of phosphate in detergents samples. International Journal of Chemical Sciences, 13, 771–785.
  • 5. Alfonso, M.B., Brendel, A.S., Vitale, A.J., Seitz, C., Piccolo, M. C., & Perillo, G. M. E. 2018. Drivers of Ecosystem Metabolism in Two Managed Shallow Lakes with Different Salinity and Trophic Conditions: The Sauce Grande and La Salada Lakes (Argentina). Water, 10(9), Art. 9.
  • 6. Asha, A.S., Saifullah, A.S.M., Uddin, Md. G., Sheikh, Md. S., Uddin, M.J., Diganta, M.T.M. 2020. Assessment of trace metal in macroalgae and sediment of the Sundarban mangrove estuary. Applied Water Science, 10(1), 51.
  • 7. Chakravarty, T., Gupta, S. 2021. Assessment of water quality of a hilly river of south Assam, north east India using water quality index and multivariate statistical analysis. Environmental Challenges, 5, 100392.
  • 8. Custodio, M., Peñaloza, R., Chanamé, F., Hinostroza-Martínez, J.L., De la Cruz, H. 2021. Water quality dynamics of the Cunas River in rural and urban areas in the central region of Peru. The Egyptian Journal of Aquatic Research, 47(3), 253–259.
  • 9. De Girolamo, A.M., Spanò, M., D’Ambrosio, E., Ricci, G.F., Gentile, F. 2019. Developing a nitrogen load apportionment tool: Theory and application. Agricultural Water Management, 226, 105806.
  • 10. Ding, J., Li, H., Cuo, L., Yi, C. 2017. Water Quality Variation Characteristics in Stormwater Period and on Weihe River Time Scale. Polish Journal of Environmental Studies, 26(6), 2495–2505.
  • 11. ENAHO. 2022. Encuesta Nacional de Hogares. Recuperado 21 de diciembre de 2022.
  • 12. Gupta, N., Pandey, P., Hussain, J. 2017. Effect of physicochemical and biological parameters on the quality of river water of Narmada, Madhya Pradesh, India. Water Science, 31(1), 11–23.
  • 13. Isiuku, B.O., Enyoh, C.E. 2020. Pollution and health risks assessment of nitrate and phosphate concentrations in water bodies in South Eastern, Nigeria. Environmental Advances, 2, 100018.
  • 14. Kareem, S.L., Jaber, W.S., Al-Maliki, L. A., Al-husseiny, R.A., Al-Mamoori, S.K., Alansari, N. 2021. Water quality assessment and phosphorus effect using water quality indices: Euphrates River- Iraq as a case study. Groundwater for Sustainable Development, 14, 100630.
  • 15. Khalil, A.M.E., Eljamal, O., Amen, T.W.M., Sugihara, Y., Matsunaga, N. 2017. Optimized nano-scale zero-valent iron supported on treated activated carbon for enhanced nitrate and phosphate removal from water. Chemical Engineering Journal, 309, 349–365.
  • 16. Kükrer, S., Mutlu, E. 2019. Assessment of surface water quality using water quality index and multivariate statistical analyses in Saraydüzü Dam Lake, Turkey. Environmental Monitoring and Assessment, 191(2), 71.
  • 17. Kumar, A., Mishra, S., Taxak, A.K., Pandey, R., Yu, Z.-G. 2020. Nature rejuvenation: Long-term (1989–2016) vs short-term memory approach based appraisal of water quality of the upper part of Ganga River, India. Environmental Technology & Innovation, 20, 101164.
  • 18. Kumar, D., Singh, A., Jha, R.K., Sahoo, S.K., Jha, V. 2018. Using spatial statistics to identify the uranium hotspot in groundwater in the mid-eastern Gangetic plain, India. Environmental Earth Sciences, 77(19), 702.
  • 19. Leaf, S. 2018. Taking the P out of pollution: An English perspective on phosphorus stewardship and the Water Framework Directive. Water and Environment Journal, 32(1), 4–8.
  • 20. MINAM. 2017. Decreto Supremo N° 004-2017. Ministerio del Ambiente. Recuperado 31 de diciembre de 2022.
  • 21. Moshoeshoe, M.N., Obuseng, V. 2018. Simultaneous determination of nitrate, nitrite and phosphate in environmental samples by high performance liquid chromatography with UV detection. South African Journal of Chemistry, 71, 79–85.
  • 22. Othman, F., Chowdhury, Md. S., Wan Jaafar, W.Z., Faresh, E.M.M., Shirazi, S.M. 2018. Assessing Risk and Sources of Heavy Metals in a Tropical River Basin: A Case Study of the Selangor River, Malaysia. Polish Journal of Environmental Studies, 27(4), 1659–1671.
  • 23. Pamei, M., Elizabeth Hemso, B., Puzari, A. 2022. Evaluation of the Physico-Chemical and the sustainability of ground and surface water quality using statistical correlation method and Water Quality Index in Dimapur District, Nagaland. Environmental Nanotechnology, Monitoring & Management, 18, 100699.
  • 24. Parween, S., Siddique, N.A., Mahammad Diganta, M.T., Olbert, A.I., Uddin, M.G. 2022. Assessment of urban river water quality using modified NSF water quality index model at Siliguri city, West Bengal, India. Environmental and Sustainability Indicators, 16, 100202.
  • 25. Salem, T.A. 2021. Changes in the physicochemical and biological characteristics in the lentic and lotic waters of the Nile river. The Egyptian Journal of Aquatic Research, 47(1), 21–27.
  • 26. Sekharan, S., Samal, D.R., Phuleria, H.C., Chandel, M.K., Gedam, S., Kumar, R., Sethi, V., Supate, A.R., Karmakar, S. 2022. River pollution monitoring over an industrial catchment in urban ecosystem: Challenges and proposed geospatial framework. Environmental Challenges, 7, 100496.
  • 27. Şener, Ş., Şener, E., Davraz, A. 2017. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Science of The Total Environment, 584–585, 131–144.
  • 28. Singh, G., Patel, N., Jindal, T., Srivastava, P., Bhowmik, A. 2020. Assessment of spatial and temporal variations in water quality by the application of multivariate statistical methods in the Kali River, Uttar Pradesh, India. Environmental Monitoring and Assessment, 192(6), 394.
  • 29. Tian, Y., Jiang, Y., Liu, Q., Dong, M., Xu, D., Liu, Y., Xu, X. 2019. Using a water quality index to assess the water quality of the upper and middle streams of the Luanhe River, northern China. Science of The Total Environment, 667, 142–151.
  • 30. Vásquez, W., Talavera, M., Inga, M. 2016. Evaluación del impacto en la calidad de agua debido a la producción semi intensiva de trucha (Oncorhynchus mykiss) en jaulas flotantes en la laguna Arapa-Puno. Revista de la Sociedad Química del Perú, 82(1), 15–28.
  • 31. Verla, E.N., Verla, A.W., Enyoh, C.E. 2020. Bioavailability, Average Daily Dose and Risk of Heavy Metals in Soils from Children Playgrounds Within Owerri, Imo State, Nigeria. Chemistry Africa, 3(2), 427–438.
  • 32. Wu, Z., Wang, X., Chen, Y., Cai, Y., Deng, J. 2018. Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of The Total Environment, 612, 914–922.
  • 33. Yu, G., Wang, J., Liu, L., Li, Y., Zhang, Y., Wang, S. 2020. The analysis of groundwater nitrate pollution and health risk assessment in rural areas of Yantai, China. BMC Public Health, 20(1), 437.
  • 34. Zhang, W., Jin, X., Liu, D., Lang, C., Shan, B. 2017. Temporal and spatial variation of nitrogen and phosphorus and eutrophication assessment for a typical arid river-Fuyang River in northern China. Journal of Environmental Sciences, 55, 41–48.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff6109fd-2ace-4914-bd2c-90ca63ccfffe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.