PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shear rate induced viscosity change of human blood samples and blood mimicking fluids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to measure blood and blood mimicking fluids viscosity at different shear rates (on the interval of 0.1–5000 1/s and 0.1–10000 1/s) while taking into consideration the measuring device’s capability and blood’s characteristics. We also provided the measurement results of the most accurate measuring program. Methods: We measured blood samples from five donors, and four different blood mimicking fluid compositions. The measurements were done on an Anton Paar Physica MCR301 rotational rheometer with two measuring programs varying in the shear rate intervals, the number of measuring points and the measuring point durations. Results: The results confirmed the significant shear thinning and thixotropic effects of blood. Blood mimicking fluids also had these characteristics. The measured blood viscosity values are in agreement with those of the literature. Conclusions: It can be concluded that the step test program was able to give more stable results as the measured torque was over the nominal limit of 0.05 μNm over 0.1 1/s and over the selected torque limit of 0.5 μNm over 31.6 1/s. Blood mimicking fluid measurement results were different from that of the literature due to different measuring conditions. The sample consisting of water, glycerol and starch mimicked well blood’s behaviour and viscosity values at 37 degrees Celsius.
Słowa kluczowe
Rocznik
Strony
99--107
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Department of Machine and Product Design, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary.
  • Department of Machine and Product Design, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary.
  • Department of Machine and Product Design, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary.
Bibliografia
  • [1] Anton Paar GmbH, RheoPlus Rheometer Software. Instruction Manual., Anton Paar GmbH, 2005.
  • [2] BILLETT H.H., Hemoglobin and hematocrit, Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd Ed., Butterworth Publishers, 1990.
  • [3] BIRO G.P., Comparison of acute cardiovascular effects and oxygen-supply following haemodilution with dextran, stromafree haemoglobin solution and fluorocarbon suspension, Cardiovasc. Res., 1982, 16 (4), 194–204.
  • [4] Devine B., Mean Blood Hematocrit of Adults, United States, 1960–1962. No. 19–24, US Department of Health, Education, and Welfare, Public Health Service, 1967.
  • [5] DONG C., SKALAK R., SUNG K.L.P., SCHMID-SCHÖNBEIN G.W., CHIEN S., Passive deformation analysis of human leukocytes, J. Biomech. Eng., 1988, 110 (1), 27–36.
  • [6] ERRILL E.W., Rheology of blood, Physiol. Rev., 1969, 49 (4), 863–888.
  • [7] GUTTERMAN D.D., CHABOWSKI D.S., KADLEC A.O. DURAND M.J., FREED J.K., AIT-AISSA K., BEYER A.M., The human microcirculation: regulation of flow and beyond, Circ. Res., 2016, 118 (1), 157–172.
  • [8] HUANG C.R., FABISIAK W., Thixotropic parameters of whole human blood, Thromb. Res., 1976, 8, 1–8.
  • [9] KU D.N., Blood flow in arteries, Annu. Rev. Fluid Mech., 1997, 29 (1), 399–434.
  • [10] KUHNLE G.E., KUEBLER W.M., GROH J., GOETZ A.E., Effect of blood flow on the leukocyte-endothelium interaction in pulmonary microvessels, Am. J. Respir. Crit. Care Med., 1995, 152 (4), 1221–1228.
  • [11] NEMETH N., PETO K., MAGYAR Z., KLARIK Z., VARGA G., OLTEAN M., MANTAS A., CZIGANY Z., TOLBA R.H., Hemorheological and microcirculatory factors in liver ischemia-reperfusion injury – An update on pathophysiology, molecular mechanisms and protective strategies, Int. J. Mol. Sci., 2021, 22 (4), 1864.
  • [12] PERRIRA N., SHUIB A.S., PHANG S.W., MUDA A.S., Experimental Investigation of Blood Mimicking Fluid Viscosity for Application in 3D-Printed Medical Simulator, J. Phys. Conf. Ser., 2022, 2222 (1), 012016.
  • [13] QUEMADA D., Hydrodynamique sanguine: hémorhéologie et écoulement du sang dans les petits vaisseaux, J. Phys. Colloques, 1976, 37 (C1), 9–22.
  • [14] RAMPLING M.W., Compositional properties of blood, Handbook of Hemorheology and Hemodynamics, IOS Press, 2007, 69, 34–44.
  • [15] SCHALLER J., GERBER S., KAEMPFER U., LEJON S., TRACHSEL C., Human blood plasma proteins: structure and function, John Wiley & Sons, 2008.
  • [16] SKALAK R., KELLER S.R., SECOMB T.W., Mechanics of Blood Flow, J. Biomech. Eng., 1981, 103 (2), 102–115.
  • [17] SUNDD P., POSPIESZALSKA M.K., CHEUNG L.S.L., KONSTANTOPOULOS K., LEY K., Biomechanics of leukocyte rolling, Biorheology, 2011, 48 (1), 1–35.
  • [18] VIALLAT A., ABKARIAN M., Red blood cell: from its mechanics to its motion in shear flow, Int. J. Lab. Hematol., 2014, 36 (3), 237–243.
  • [19] WATTS S.W., KANAGY N.L., LOMBARD J.H., Receptor-mediated events in the microcirculation, Microcirculation, Academic Press, 2008, 285–348.
  • [20] Health Organization, The Top 10 Causes of Death, 2020, https://www.who.int/news-room/fact-sheets/detail/the-top-10-causesof-death [Accessed: 04 April 2024].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff5cf7f2-c3d4-41e4-8ba1-7c99fc847d6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.