Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Methane is one of the main greenhouse gases (GHG) affecting climate change, and proper quantification of the amount of its emissions to the atmosphere is crucial. The basic parameter for determining the potential amounts of naturally occurring methane in coal for both hard coal and lignite is the methane content. Determination of the methane content of lignite for open-pit mines is not commonly used and required as there is no possibility of its accumulation in the mine workings, as is the case for underground hard coal mines. In this article, two research areas for open-pit lignite mines were analyzed in terms of the methane content of their coal seams. Two direct methods for determining methane content are presented: the single-phase vacuum degassing (SPVD) method and the United States Bureau of Mines (USBM) method, which have been adapted to the conditions of an open-pit lignite mine. In addition, a study of methane sorption kinetics was conducted to determine the potential methane emission rate during coal exploitation and to estimate gas losses during sampling for proper testing. Conclusions from the analysis can be used to develop new or improve existing solutions for determining the methane content of lignite deposits for open-pit mines.
Wydawca
Czasopismo
Rocznik
Tom
Strony
214--226
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
autor
- Central Mining Institute, National Research Institute e Department of Mining Aerology, Poland
Bibliografia
- [1] Karbownik M, Krawczyk J, Schlieter T. The unipore and bidisperse diffusion models for methane in hard coal solid structures related to the conditions in the upper Silesian coal basin. Arch Min Sci 2020;65:591e603. https://doi.org/ 10.24425/ams.2020.134136.
- [2] An EU strategy to reduce methane emissions: European Parliament resolution of 21 October 2021 on an EU strategy to reduce methane emissions (2021/2006(INI)) 21.10. 2021 [internet]. Retrieved from: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX:52021IP0436.
- [3] International Energy Agency (IEA). Driving down coal mine methane emissions. A regulatory roadmap and toolkit [internet]. France; 2023. Retrieved from: https://iea.blob.core. windows.net/assets/ab2115cd-2b04-4e66-9a71-ec2c14d13acf/ DrivingDownCoalMineMethaneEmissions.pdf.
- [4] Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health 2020;8:14. https:// doi.org/10.3389/fpubh.2020.00014.
- [5] Trenchev P. Use of satellite data with medium spatial resolution to detect atmospheric methane pollution. Ph.D. Thesis, space research Institute at the Bulgarian academy of sciences. Sofia, Bulgaria. 2022.
- [6] Trenchev P, Dimitrova M, Avetisyan D. Huge CH4, NO2 and CO emissions from coal mines in the kuznetsk basin (Russia) detected by sentinel-5P. Rem Sens 2023;15:1590. https:// doi.org/10.3390/rs15061590.
- [7] Hendrick MF, Ackley R, Sanaie-Movahed B, Tang X, Phillips NG. Fugitive methane emissions from leak-prone natural gas distribution infrastructure in urban environments. Environ Pollut 2016;213:710e6. https://doi.org/ 10.1016/j.envpol.2016.01.094.
- [8] Intergovernmental Panel on Climate Change (IPCC). Global warming potential values [internet]. 2016. Retrieved from, http://ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20(Feb%2016%202016).pdf.
- [9] United States Environmental Protection Agency (U.S. EPA). Understanding global warming potentials [internet]. Washington. 2017. Retrieved from: https://www.epa.gov/ ghgemissions/understanding-global-warming-potentials.
- [10] Kholod N, Evans M, Pilcher RC, Roshchanka V, Ruiz F, Cote M, et al. Global methane emissions from coal mining to continue growing even with declining coal production. J Clean Prod 2020;256:120489. https://doi.org/10.1016/ j.jclepro.2020.120489.
- [11] Ganesan AL, Schwietzke S, Poulter B, Arnold T, Lan X, Rigby M, et al. Advancing scientific understanding of the global methane budget in support of the Paris agreement. Global Biogeochem Cycles 2019;33:1475e512. https://doi.org/ 10.1029/2018GB006065.
- [12] United Nations Economic Commission for Europe (UNECE). Best practice guidance for effective management of coal mine methane at national level: monitoring, reporting, verification and mitigation. United nations: Geneva, Switzerland. 2022. p. 1e43.
- [13] Bibler CJ, Marshall JS, Pilcher RC. Status of worldwide coal mine methane emissions and use. Int J Coal Geol 1998; 35(1e4):283e310. https://doi.org/10.1016/S0166-5162(97)00038-4.
- [14] Su S, Beath A, Guo H, Mallett C. An assessment of mine methane mitigation and utilisation technologies. Prog Energy Combust Sci 2005;31(2):123e70. https://doi.org/10.1016/ j.pecs.2004.11.001.
- [15] Cheng YP, Wang L, Zhang XL. Environmental impact of coal mine methane emissions and responding strategies in China. Int J Greenh Gas Control 2011;5(1):157e66. https:// doi.org/10.1016/j.ijggc.2010.07.007.
- [16] Karakurt I, Aydin G, Aydiner K. Sources and mitigation of methane emissions by sectors: a critical review. Renew Energy 2012;39(1):40e8. https://doi.org/10.1016/j.renene.2011. 09.006.
- [17] Chen D, Chen A, Hu X, Li B, Li X, Guo L, et al. Substantial methane emissions from abandoned coal mines in China. Environ Res 2022;214(2):113944. https://doi.org/10.1016/ j.envres.2022.113944.
- [18] Tutak M. Analysis of the methane-bearing capacity in Polish hard coal mines in the years 1993-2018. E3S Web of Conferences 2020;174:02015. https://doi.org/10.1051/e3sconf/ 202017402015.
- [19] United States Environmental Protection Agency (EPA). About Coal Mine Methane (CMM) [internet]. Retrieved from: https://www.epa.gov/cmop/about-coal-mine-methane.
- [20] International Energy Agency (IEA). Driving down coal mine methane emissions [internet]. Paris. 2023. Retrieved from, https://www.iea.org/reports/driving-down-coal-mine-methane-emissions.
- [21] International Energy Agency (IEA). Strategies to reduce emissions from coal supply [internet]. Retrieved from: https://www.iea.org/reports/global-methane-tracker-2023/ strategies-to-reduce-emissions-from-coal-supply.
- [22] Alvarez RA, Zavala-Araiza D, Lyon DR, Allen DT, Barkley ZR, Brandt AR, et al. Assessment of methane emissions from the U.S. oil and gas supply chain. Science 2018; 361:186e8.
- [23] Kelly EN, Schindler DW, Hodson PV, Short JW, Radmanovich R, Nielsen CC. Oil sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries. In: The proceedings of the national academy of sciences; 2010. p. 16178e83. https:// doi.org/10.1073/pnas.100875410. 107.
- [24] Simpson IJ, Blake NJ, Barletta B, Diskin GS, Fuelberg HE, Gorham K, et al. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2. Atmos Chem Phys 2010;10: 11931e54. https://doi.org/10.5194/acp-10-11931-2010.
- [25] Small CC, Cho S, Hashisho Z, Ulrich AC. Emissions from oil sands tailings ponds: review of tailings pond parameters and emission estimates. J Petrol Sci Eng 2015;127:490e501. https://doi.org/10.1016/j.petrol.2014.11.020.
- [26] Nambiar MK, Robe FR, Seguin AM, Endsin M, Aliabadi AA. Diurnal and seasonal variation of area-fugitive methane advective flux from an open-pit mining facility in northern Canada using WRF. Atmosphere 2020;11(11):1227. https:// doi.org/10.3390/atmos11111227.
- [27] Intergovernmental Panel on Climate Change (IPCC). 49th Session of Intergovernmental Panel on Climate Change. The 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2019 Refinement) [internet]. Retrieved from: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/.
- [28] Polish Committee for Standardization: PN-G-44200:2013-10 Mining. Determination of methane content in hard coal seams. Poland: Drill cuttings method; 2013.
- [29] Szlązak N, Korzec M, Piergies K. The determination of the methane content of coal seams based on drill cutting and core samples from coal mine roadway. Energies 2022;15:178. https://doi.org/10.3390/en15010178.
- [30] Karbownik M, Dudzińska A, Strzymczok J. Multi-parameter analysis of gas losses occurring during the determination of methane-bearing capacity in hard coal beds. Energies 2022; 15:3239. https://doi.org/10.3390/en15093239.
- [31] Baran P, Hołda S, Macuda J, Nodzeński A, Zawisza L. Investigations of methane content in lignite coals. Mineral Resour Manage 2007;23(3):21e8.
- [32] Macuda J, Zawisza L. Occurrence of methane in lignite beds. Mining Geoeng 2007;31(2):445e52.
- [33] Macuda J, Baran P, Wagner M. Evaluation of the presence of methane in złoczew lignite: comparison with other lignite deposits in Poland. Nat Resour Res 2020;29(6):3841e56. https://doi.org/10.1007/s11053-020-09691-7.
- [34] Pytlak A, Szafranek-Nakonieczna A, Goraj W, Snieżyńska I, Krązała A, Banach A, et al. A survey of greenhouse gases production in central European lignites. Sci Total Environ 2021;800:149551. https://doi.org/10.1016/j.scitotenv.2021. 149551.
- [35] Marino-Martinez JE, Chanci-Bedoya RD, Gonzalez-Preciado AJ. Methane emissions from coal open pits in Colombia. DYNA 2020;87(214):139e45. https://doi.org/ 10.15446/dyna.v87n214.84298.
- [36] Saralov AI. Methane sorption on Brown and sapropelite coals. Solid Fuel Chem 2010;44(5):310e4. https://doi.org/ 10.3103/S0361521910050058.
- [37] Karbownik M. Analysis of the application of methane-bearing capacity test methods in the conditions of Polish mining. J Sustain Mining 2022;21(4):309e18. https://doi.org/ 10.46873/2300-3960.1365. 2.
- [38] Ordinance of the Minister of Energy dated November 23, 2016 on detailed requirements for the operation of underground mining plants. J Laws 2017. item 1118 [internet]. Retrieved from, https://isap.sejm.gov.pl/isap.nsf/DocDetails. xsp?id=WDU20170001118.
- [39] Polish Committee for Standardization. PN-ISO 1171: 2002 Solid fuels. Determination of ash content. Poland. 2002.
- [40] Polish Committee for Standardization: PN-G-04511:1980. Solid fuels. Determination of moisture content. Poland. 1980.
- [41] Polish Committee for Standardization: PN-G-04516:1998. Solid fuels. Determination of volatile matter content by weight method. Poland. 1998.
- [42] Kissell FN, McCulloch CM, Elder CH. The direct method of determining methane content of coalbeds for ventilation Design. United States Department of the Interior. Bur Mine Rep Invest 1973;7767:1e17.
- [43] ASTM International. Astm d7569/d7569m - 10 (reapproved 2015) determination of gas content of coal - direct desorption method. Pennsylvania, United States. 2015.
- [44] Wierzbinski K. The course of methane adsorption kinetics as indicator of seam structural changes in the fault zone area. Min Rev 2011;67(6):70e5.
- [45] Karbownik M, Krawczyk J, Godyn K, Schlieter T, Scucka J. Analysis of the influence of coal petrography on the proper application of the unipore and bidisperse models of methane diffusion. Energies 2021;14:8495. https://doi.org/10.3390/ en14248495.
- [46] Wang A, Qin Y, Lan F. Geochemical characteristics and microbial populations of Neogene brown coal from Zhao-tong Basin, China. Environ Earth Sci 2013;68:1539e44. https://doi.org/10.1007/s12665-012-1847-0.
- [47] Kirchgessner DA, Piccot SD, Masemore SS. An improved inventory of methane emissions from coal mining in the United States. J Air Waste Manag Assoc 2000;50(11):1904e19. https://doi.org/10.1080/10473289.2000.10464227.
- [48] Esen O, O€ zer SC, Soylu A, Rend AR, Fisne A. An investigation of the coal seam gas content and composition in soma coal basin, Turkey. Coal operators conference. Wollongong NSW Australia. 2018.
- [49] Wang K, Fu X, Qin Y, Santigie KS. Adsorption characteristic of lignite in China. J Earth Sci 2011;22(3):371e6. https:// doi.org/10.1007/s12583-011-0189-2.
- [50] Skoczylas N, Kudasik M, Wierzbicki M, Murzyn T. Determination of desorb able methane content in coal and effective coefficient of methane diffusion on coal by use of the analog method. Min Rev 2015;2:66e71.
- [51] Krause E, Wierzbinski K. Sorption properties of rocks from the region of gas and rock outburst in the copper ore deposit of the Rudna mine. In: XVII international scientific and technical conference mining natural hazards, safe workplace in underground coal and copper ore mining. Poland, targa-nice. vol. 2010; 2010.
- [52] Timofiejew DP. Adsorption kinetics. Leipzig, Germany: VEB; 1967.
- [53] Baran P, Cygankiewicz J, Zarębska K. Carbon dioxide sorption on polish Ortho lignite coal in low and elevated pressure. J CO2 Util 2013;3e4:44e8. https://doi.org/10.1016/ j.jcou.2013.09.003.
- [54] Henc M, Tomaszewicz M, Tsuboi Y, Sawicki J, Tomaszewicz G, Zuwała J. Use lignite in gasification review of polish Wroclaw - Japan Project, UCESP. In: DRYLING project Final Workshop: competitive pre-drying technologies and firing concepts for flexible and efficient lignite utilization; 2018. p. 1e22. http://wme-z1.pwr.edu.pl/wp-content/ uploads/2017/06/S33_Tomaszewicz_gasification_ICHPW.pdf.
- [55] Karbownik M, Krawczyk J, Schlieter T. The unipore and bidisperse diffusion models for methane in hard coal solid structures related to the conditions in the upper Silesian coal basin. Arch Min Sci 2020;65:591e603. https://doi.org/ 10.24425/ams.2020.134136.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff5b04ef-11dc-4cd9-ab17-843a64e2333f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.