PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Impact of Wiper Geometry Insert on Surface Roughness and Chips in Machining Materials Used in the Aviation Industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, great emphasis is placed on increasing the efficiency of machining processes. However, this cannot be done at the expense of quality worsening of the machined surface. In this paper the influence of Wiper geometry on Ra and Rz surface roughness parameters is described when finishing turning of materials used in the aviation industry: austenitic stainless steel XCrNiNb18-9, low alloy steel 14NiCr14 and aluminum alloy A356, as well as the chips generated in the cutting process in terms of shape were assessed. It was found that for the lowest tested feed rate during turning with a Wiper insert, the values of Ra and Rz parameters do not differ significantly from the roughness parameters obtained during machining with a conventional insert. The beneficial effect of feed rate on surface roughness for the Wiper insert is clearly visible above f ≥ 0.12 mm/rev. The biggest difference in roughness parameters was recorded for the highest value of the applied feed f = 0.28 mm/rev. Using conventional insert, Ra and Rz values are almost three times bigger than for Wiper insert. The influence of the cutting speed on the Ra and Rz parameters depends on the type of material being processed. Increasing cutting speed from vc =120 m/min to vc = 200 m/min for stainless steel, Ra and Rz values decrease about 35%. Similar situation noticed for aluminum alloy, but increasing cutting speed decrease Ra and Rz values only about 18%. The situation is different for low alloy steel. Increasing the cutting speed increases the Ra and Rz parameters by about 37%. Rz/Ra ratio shows that for feed rate f ≤ 0.12 mm/rev. cutting process is unstable, because the values are between 5.5–7.5, but should oscillate around 4. Increasing feed rate value to f = 0.2 mm/rev allows to stabilize the process and the ratio value is close to 4. Wiper insert create the same form chips as a conventional insert, using the same value of feed rate.
Słowa kluczowe
Twórcy
  • Pratt & Whitney Kalisz, ul. Elektryczna 4a, 62-800 Kalisz, Poland
  • Higher Vocational State School President Stanislaw Wojciechowski in Kalisz, ul Nowy Świat 4, 62-800 Kalisz, Poland
  • Pratt & Whitney Kalisz, ul. Elektryczna 4a, 62-800 Kalisz, Poland
  • Pratt & Whitney Kalisz, ul. Elektryczna 4a, 62-800 Kalisz, Poland
  • Faculty of Mechanical Engineering, Poznań University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
Bibliografia
  • 1. Kawalec M., Szablewski P. Kształtowanie struktury geometrycznej powierzchni Inconelu 718 w procesie dokładnego toczenia, Zeszyty Naukowe Politechniki Poznańskiej, 2005; 2: 93–102.
  • 2. Zagórski I., Warda T. Effect of technological parameters on the surface roughness of aluminum alloys after turning. Advances in Science and Technology Research Journal. 2018; 12(2): 144–149.
  • 3. Elbah M., Athmane Yallese M., Aouici H., Mabrouki T., Rigal J.F. Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel. Measurement. 2013; 46: 3041–3056.
  • 4. Labuda W. The influence of changing of treatment condition on surface roughness parameter during turning process by Wiper insert. Journal of KONES Powertrain and Transport. 2019; 26(1): 81–88.
  • 5. Subbaiah K.V., Raju C., Pawade R.S. Suresh C. Machinability investigation with wiper ceramic insert and optimization during the hard turning of AISI 4340 steel. Mater. Today. 2019; 18: 445–454.
  • 6. Subbaiah K.V., Raju Ch., Suresh Ch. Parametric analysis and optimization of hard turning at different levels of hardness using wiper ceramic insert. Measurement. 2020; 158: 10–13.
  • 7. Karolczak P., Kowalski M., Raszka K. The Effect of the Use of Cutting Zone Minimum Quantity Lubrication and Wiper Geometry Inserts on Titanium Ti6Al4V Surface Quality After Turning. Tribology in Industry. 2021; 43(2): 321–333.
  • 8. Grzesik W. Influence of tool wear on surface roughness in hard turning using differently shaped ceramic tools. Wear. 2008; 265: 327–335.
  • 9. Venkata Subbaiah K., Raju C., Pawade R.S., Suresh C. Hard Turning with Wiper Ceramic Insert; Parametric Analysis and Optimization with Desirability Approach. International Journal of Engineering Trends and Technology (IJETT). 2017; 19(7): 430–436.
  • 10. Cichosz P. Narzędzia skrawające. WNT. Warszawa;2006.
  • 11. Zhang P., Liu Z. Modeling and prediction for 3D surface topography in finish turning with conventional and wiper inserts. Measurement. 2016; 94: 37–45.
  • 12. Zhang P.R., Liu Z.Q., Guo Y.B. Machinability for dry turning of laser cladded parts with conventional vs. wiper insert. Journal of Manufacturing Processes. 2017; 28: 494–499.
  • 13. Abbas A., Rayes M., Luqman M., Naeim N., Hegab H., Elkaseer A. On the Assessment of Surface Quality and Productivity Aspects in Precision Hard Turning of AISI 4340 Steel Alloy: Relative Performance of Wiper vs. Conventional Inserts. Materials. 2020; 13: 10–16.
  • 14. Stachurski W., Kruszynski B., Midera S. Influence of Cutting Conditions in Turning with Wiper Type Inserts on Surface Roughness and Cutting Forces. Mechanics and Mechanical Engineering. 2012; 16(1): 25–32.
  • 15. Kruszyński B., Stachurski W., Zgórniak P. Wpływ warunków obróbki podczas toczenia ostrzami typu Wiper na jakość powierzchni obrobionej i siły skrawania. Inżynieria Maszyn. 2010; 15(4): 7–19.
  • 16. Kumar A., Pradhan S.K. Investigations into hard turning process using wiper tool inserts. Materials Today: Proceedings. 2018; 5: 12579–12587.
  • 17. Paiva A.P., Campos P.H., Ferreira J.R. Lopes L.G.D., Paiva E.J., Balestrassi P.P. A multivariate robust parameter design approach for optimization of AISI 52100 hardened steel turning with wiper mixed ceramic tool. Int. J. Refractory Met. Hard Mater. 2012; 30(1): 152–163.
  • 18. Guddat J., M’Saoubi R., Alm P., Meyer D. Hard turning of AISI 52100 using PCBN wiper geometry inserts and the resulting surface integrity. Procedia Engineering. 2011; 19: 118–124.
  • 19. Kurniawan D., Yusof N., Sharif S. Hard Machining of Stainless Steel Using Wiper Coated Carbide: Tool Life and Surface Integrity. Materials and Manufacturing Processes. 2010; 25(6): 370–377.
  • 20. Abbas A.T., Abubakr M., Elkaseer A., El Rayes M.M. Mohammed M.L., Hegab H. Towards an adaptive design of quality, productivity and economic aspects when machining AISI 4340 steel with Wiper inserts. IEEE Access. 2020; 8.
  • 21. Khan S.A., Umar M., Saleem M.Q., Mufti N.A., Raza S.F. Experimental investigations on wiper inserts’ edge preparation, workpiece hardness and operating parameters in hard turning of AISI D2 steel. Journal of Manufacturing Processes. 2018; 34: 187–196.
  • 22. Abbas A., Anwar S., Hegab H., Benyahia F., Ali, H., Elkaseer A. Comparative Evaluation of Surface Quality, Tool Wear, and Specific Cutting Energy for Wiper and Conventional Carbide Inserts in Hard Turning of AISI 4340 Alloy Steel. Materials. 2020; 13: 10–16.
  • 23. D’Addona D.M., Raykar S.J. Analysis of surface roughness in hard turning using wiper insert geometry. Procedia 48th CIRP Conf. Manuf. Syst. Res. Innov. Manuf. Key Enabling Technol. Factories Future. 2016; 41: 841–846.
  • 24. Kiyak M., Sahin I., Cakir O. Application of wiper insert in cutting tool technology. Proceedings of ICAS2016 1st International Conference on Advances in Sciences. 2016: 60–65.
  • 25. Correia A.E., Davim J.P. Surface roughness measurement in turning carbon steel AISI 1045 using wiper inserts. Measurement. 2011; 44: 1000–1005.
  • 26. Fujimaki S., Shibayama T., Hayasaka T., Shamoto E. Proposal of “Curved-Profile Wiper Turning” for efficient, stable, and smooth finishing. Precision Engineering. 2020; 64: 152–159.
  • 27. Karolczak P., Kowalski M. Ocena wpływu ostrzy o geometrii wygładzającej na chropowatość powierzchni stali X17CrNi16-2 po toczeniu. Mechanik. 2015; 8–9: 715–723.
  • 28. Karolczak P., Kowalski M. Modyfikacja chropowatości powierzchni przy toczeniu stali chromowo-niklowo-molibdenowej ostrzami typu Wiper. Mechanik. 2014; 8–9: 469–476.
  • 29. Krolczyk G.M., Maruda R.W., Nieslony P., Wieczorowski M. Surface morphology analysis of Duplex Stainless Steel (DSS) in Clean Production using the Power Spectral Density. Measurement. 2016; 94: 464–470.
  • 30. Kummel J., Gibmeier E., Müller E., Schneider R., Schulze V., Wanner A. Detailed analysis of microstructure of intentionally formed built-up edges for improving wear behaviour in dry metal cutting process of steel. Wear. 2014; 311: 21–30.
  • 31. Feldshtein E., Jozwik J., Legutko S. The influence of the conditions of emulsion mist formation on the surface roughness of AISI 1045 steel after finish turning. Advances in Science and Technology Research Journal. 2016; 10(30); 144–149.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff5aa503-5a3b-4c11-bf8a-0be473336692
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.