PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The trapezoidal finite element in absolute coordinates for dynamic modeling of automotive tire and air spring bellows. Part II: verification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The second part of the paper includes numerical tests verifying equations of motion of flexible bodies in absolute coordinates with rectangle and isosceles trapezoid finite elements. The equations are formulated in the first part of the paper. The verification is based on three types of problems: calculation of natural frequencies and modes, evaluation of buckling, and computation of large static and dynamic deflections of flexible bodies. Tests show good agreement with the theoretical results and the results obtained by other authors.
Czasopismo
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
  • Bryansk State Technical University, Laboratory of Computational Mechanics, bulv. 50 let Oktyabrya 7, Bryansk, 241035, Russia
  • Bryansk State Technical University, Laboratory of Computational Mechanics, bulv. 50 let Oktyabrya 7, Bryansk, 241035, Russia
Bibliografia
  • 1. Pogorelov, D.Y. & Rodikov, A.N. The trapezoidal finite element in absolute coordinates for dynamic modeling of automotive tire and air spring bellows. Part 1: Equations of motion. Transport Problems. 2021. Vol. 16. No. 2. P. P. 141-152.
  • 2. Zhou, Z.H. & Wong, K.W. & Xu, X.S. & et al. Natural vibration of circular and annular thin plates by Hamiltonian approach. Journal of Sound and Vibration. 2011. No. 330. P. 1005-1017.
  • 3. Bardell, N.S. & Dunsdon, J.M. & Langley, R.S. Free vibration of thin, isotropic, open conical panels. Journal of Sound and Vibration. 1998. No. 217. P. 297-320.
  • 4. Gere, J.M. & Timoshenko, S.P. Mechanics of Materials. 3rd Edition. Springer US. 1991. 827 p.
  • 5. Levy, S. Square plate with clamped edges under normal pressure producing large deflections. Report No. 740. Washington, D.C.: National Advisory Committee for Aeronautics. 1941. 14 p.
  • 6. Dumir, P.C. & Nath, Y. & Gandhi, M.L. Non-linear axisymmetric static analysis of orthotropic thin annular plates. International Journal of Non-Linear Mechanics. 1984. Vol. 19(3). P. 255-272.
  • 7. Yoo, W.S. & Lee, J.H. & Park S.J. & et al. Large deflection analysis of a thin plate: Computer Simulations and Experiments. Multibody System Dynamics. 2004. Vol. 11. P. 185-208.
  • 8. Биргер, И.А & Пановко, Я.Г. Прочность, устойчивость, колебания. Справочник в трех томах. Том 3. Москва: Машиностроение. 1968.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff572f1b-b726-4075-936c-5d03868bf2e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.