PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Loosening and breakage of lumbar pedicle screw are the most common complications affecting the spinal stability. The design factors of the pedicle screw that may affect the fixation strength under bending load are pitch length, major diameter, thread profiles and geometry. In this study, 84 finite element (FE) models of the pedicle screw were generated having 7 pitch lengths, 3 major diameters, 2 thread profiles and 2 geometries. The assembly of pedicle screw and CT scan based half section FE model of 4th lumbar vertebra was loaded with a 200 N force on the screw head which is equivalent to a bending moment of 11 Nm. With triangular thread profile and cylindrical geometry, for 300% increase in pitch length (1–4 mm), von Mises stress in screw and von Mises strain in bone increased by 65% and 117% respectively, for a 26% decrease in major diameter (7.6 mm to 5.6 mm) and correlations were proposed among screw stress (r2 = 0.992) or bone strain (r2 = 0.986), pitch length and major diameter. Similar correlations were also proposed for trapezoidal thread profile and tapered geometry (r2 = 0.994 for screw stress and r2 = 0.986 for bone strain). Hence, a combination of tapered pedicle screw with lower pitch length, higher diameter and trapezoidal thread profile may serve better under bending load for lumbar vertebral implant.
Twórcy
  • Dept. of Aerospace Engineering & Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India; Dept. of Mechanical Engineering, JIS College of Engineering, Kalyani, West Bengal, India
  • Dept. of Aerospace Engineering & Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
autor
  • Dept. of Aerospace Engineering & Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
autor
  • Dept. of Mechanical Engineering, SRM Institute of Science and Technology, Tamilnadu, India
  • Dept. of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, India
  • Dept. of Aerospace Engineering & Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
  • Dept. of Aerospace Engineering & Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
Bibliografia
  • [1] Chatzistergos PE, Magnissalis EA, Kourkoulis SK. A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite- element model. Med Eng Phys 2010;32(2):145–54.
  • [2] Hicks JM, Singla A, Shen FH, Arlet V. Complications of pedicle screw fixation in scoliosis surgery: a systematic review. Spine (Phila Pa 1976) 2010;35(11):E465–70.
  • [3] Wu JC, Huang WC, Tsai HW, Ko CC, Wu CL, Tu TH, et al. Pedicle screw loosening in dynamic stabilization: incidence, risk, and outcome in 126 patients. Neurosurg Focus 2011;31 (4):pE9.
  • [4] Cunningham BW, Sefter JC, Shono Y, McAfee PC. Static and cyclical biomechanical analysis of pedicle screw spinal constructs. Spine (Phila Pa 1976) 1993;18(12):1677–88.
  • [5] Chen SI, Lin RM, Chang CH. Biomechanical investigation of pedicle screw–vertebrae complex: a finite element approach using bonded and contact interface conditions. Med Eng Phys 2003;25(4):275–82.
  • [6] Lai DM, Shih YT, Chen YH, Chien A, Wang JL. Effect of pedicle screw diameter on screw fixation efficacy in human osteoporotic thoracic vertebrae. J Biomech 2018;70(Mar 21):196–203.
  • [7] Shih KS, Hsu CC, Hou SM, Yu SC, Liaw CK. Comparison of the bending performance of solid and cannulated spinal pedicle screws using finite element analyses and biomechanical tests. Med Eng Phys 2015;37(9):879–84.
  • [8] Chen CS, Chen WJ, Cheng CK, Jao SHE, Chueh SC, Wang CC. Failure analysis of broken pedicle screws on spinal instrumentation. Med Eng Phys 2005;27(6):487–96.
  • [9] Chao CK, Hsu CC, Wang JL, Lin J. Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses. J Spinal Disord Tech 2008;21(2):130–8.
  • [10] Abshire BB, McLain RF, Valdevit A, Kambic HE. Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out. Spine J 2001;1(6):408–14.
  • [11] Inceoglu S, Ferrara L, McLain RF. Pedicle screw fixation strength: pullout versus insertional torque. Spine J 2004; 4(5):513–8.
  • [12] Zhang QH, Tan SH, Chou SM. Investigation of fixation screw pull-out strength on human spine. J Biomech 2004; 37(4):479–85.
  • [13] Hsu CC, Chao CK, Wang JL, Hou SM, Tsai YT, Lin J. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. J Orthop Res 2005;23(4):788–94.
  • [14] Krenn MH, Piotrowski WP, Penzkofer R, Augat P. Influence of thread design on pedicle screw fixation. J Neurosurg Spine 2008;9(1):90–5.
  • [15] Cho W, Cho SK, Wu C. The biomechanics of pedicle screw- based instrumentation. J Bone Joint Surg Br 2010;92(8):1061–5.
  • [16] Kim YY, Choi WS, Rhyu KW. Assessment of pedicle screw pullout strength based on various screw designs and bone densities—an ex vivo biomechanical study. Spine J 2012;12 (2):164–8.
  • [17] Amaritsakul Y, Chao CK, Lin J. Comparison study of the pullout strength of conventional spinal pedicle screws and a novel design in full and backed-out insertions using mechanical tests. Proc Inst Mech Eng H 2014;228(3):250–7.
  • [18] Fogel GR, Reitman CA, Liu W, Esses SI. Physical characteristics of polyaxial-headed pedicle screws and biomechanical comparison of load with their failure. Spine (Phila Pa 1976) 2003;28(5):470–3.
  • [19] McKinley TO, McLan RF, Yerby SA, Sharkey NA, Sarigul- Klijn N, Smith TS. Characteristics of pedicle screw loading: effect of surgical technique on intervertebral and intrapedicular bending moments. Spine (Phila Pa 1976) 1999;24(1):18–24.
  • [20] Stanford RE, Loefler AH, Stanford PM, Walsh WR. Multiaxial pedicle screw designs: static and dynamic mechanical testing. Spine (Phila Pa 1976) 2004;29(4):367–75.
  • [21] Chao CK, Lin J, Hsu CC, Putra ST. A neurogenetic approach to a multiobjective design optimization of spinal pedicle screws. J Biomech Eng 2010;132(9):p091006.
  • [22] Wang W, Baran GR, Garg H, Betz RR, Moumene M, Cahill PJ. The benefits of cement augmentation of pedicle screw fixation are increased in osteoporotic bone: a finite element analysis. Spine Deform 2014;2(4):248–59.
  • [23] Biswas JK, Rana M, Karmakar SK, Majumder S, RoyChowdhury A. Effect of two-level pedicle–screw fixation with different rod materials on lumbar spine: a finite element study. J Orthop Sci 2018;23(2):258–65.
  • [24] Majumder S, Roychowdhury A, Pal S. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis–femur–soft tissue complex with simplified representation of whole body. Med Eng Phys 2007;29 (10):1167–78.
  • [25] Lo CC, Tsai KJ, Zhong ZC, Chen SH, Hung C. Biomechanical differences of Coflex-F and pedicle screw fixation combined with TLIF or ALIF—a finite element study. Comput Methods Biomech Biomed Eng 2011;14(11):947–56.
  • [26] Rohlmann A, Graichen F, Weber U, Bergmann G. Monitoring in vivo implant loads with a telemeterized internal spinal fixation device. Spine (Phila Pa 1976) 2000;25(23):2981–6.
  • [27] Rohlmann A, Graichen F, Bergmann G. Influence of load carrying on loads in internal spinal fixators. J Biomech 2000;33(9):1099–104.
  • [28] Zdeblick TA. A prospective, randomized study of lumbar fusion: preliminary results. Spine (Phila Pa 1976) 1993; 18(8):983–91.
  • [29] Zdeblick TA, Kunz DN, Cooke ME, McCabe R. Pedicle screw pullout strength: correlation with insertional torque. Spine (Phila Pa 1976) 1993;18(12):1673–6.
  • [30] Youssef JA, McKinley TO, Yerby SA, McLain RF. Characteristics of pedicle screw loading: effect of sagittal insertion angle on intrapedicular bending moments. Spine (Phila Pa 1976) 1999;24(11):1077–81.
  • [31] Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Can insertional torque predict screw loosening and related failures? An in vivo study of pedicle screw fixation augmenting posterior lumbar interbody fusion. Spine (Phila Pa 1976) 2000;25(7):858–64.
  • [32] Shepard MF, Wang JC, Oshtory R, Yoo J, Kabo JM. Enhancement of pedicle screw fixation through washers. Clin Orthop Relat Res 2002;395:249–54.
  • [33] Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D. Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng 1996;118(3):391–8.
  • [34] Haase K, Rouhi G. Prediction of stress shielding around an orthopedic screw: using stress and strain energy density as mechanical stimuli. Comput Biol Med 2013;43(11):1748–57.
  • [35] Wittenberg RH, Lee KS, Shea M, White III AA, Hayes WC. Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength. Clin Orthop Relat Res 1993;296:278–87.
  • [36] Ono A, Brown MD, Latta LL, Milne EL, Holmes DC. Triangulated pedicle screw construct technique and pull-out strength of conical and cylindrical screws. J Spinal Disord 2001;14(4):323–9.
  • [37] Bouzakis KD, Mitsi S, Michailidis N, Mirisidis I, Mesomeris G, Maliaris G, et al. Loading simulation of lumbar spine vertebrae during a compression test using the finite elements method and trabecular bone strength properties, determined by means of nanoindentations. J Musculoskelet Neuronal Interact 2004;4(2):152–8.
  • [38] Goel VK, Ebraheim NA, Biyani A, Rengachary S, Faizan A. Role of mechanical factors in the evaluation of pedicle screw type spinal fixation devices. Neurol India 2005;53 (4):399–407.
  • [39] Meyers K, Tauber M, Sudin Y, Fleischer S, Arnin U, Girardi F, et al. Use of instrumented pedicle screws to evaluate load sharing in posterior dynamic stabilization systems. Spine J 2008;8(6):926–32.
  • [40] Alam K, Mitrofanov AV, Silberschmidt VV. Finite element analysis of forces of plane cutting of cortical bone. Comput Mater Sci 2009;46(3):738–43.
  • [41] Mattei TA, Meneses MS, Milano JB, Ramina R. ‘‘Free-hand’’ technique for thoracolumbar pedicle screw instrumentation: critical appraisal of current ‘‘State-of-Art’’. Neurol India 2009;57(6):715.
  • [42] Kim K, Park WM, Kim YH, Lee S. Stress analysis in a pedicle screw fixation system with flexible rods in the lumbar spine. Proc Inst Mech Eng H 2010;224(3):477–85.
  • [43] Sanyal A, Gupta A, Bayraktar HH, Kwon RY, Keaveny TM. Shear strength behavior of human trabecular bone. J Biomech 2012;45(15):2513–9.
  • [44] Li S, Abdel-Wahab A, Demirci E, Silberschmidt VV. Penetration of cutting tool into cortical bone: experimental and numerical investigation of anisotropic mechanical behaviour. J Biomech 2014;47(5):1117–26.
  • [45] Santiuste C, Rodríguez-Millán M, Giner E, Miguélez H. The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone. Composite Struct 2014;116:423–31.
  • [46] Henak CR, Ateshian GA, Weiss JA. Finite element prediction of transchondral stress and strain in the human hip. J Biomech Eng 2014;136(2):021021.
  • [47] Puvanesarajah V, Liauw JA, Lo SF, Lina IA, Witham TF. Techniques and accuracy of thoracolumbar pedicle screw placement. World J Orthop 2014;5(2):112–23.
  • [48] Amaritsakul Y, Chao CK, Lin J. Biomechanical evaluation of bending strength of spinal pedicle screws, including cylindrical, conical, dual core and double dual core designs using numerical simulations and mechanical tests. Med Eng Phys 2014;36(9):1218–23.
  • [49] Huang HL, Su KC, Fuh LJ, Chen MY, Wu J, Tsai MT, et al. Biomechanical analysis of a temporomandibular joint condylar prosthesis during various clenching tasks. J Craniomaxillofac Surg 2015;43(7):1194–201.
  • [50] Newcomb AG, Baek S, Kelly BP, Crawford NR. Effect of screw position on load transfer in lumbar pedicle screws: a non-idealized finite element analysis. Comput Methods Biomech Biomed Eng 2017;20(2):182–92.
  • [51] Knežević J, Kodvanj J, Čukelj F, Pamuković F, Pavić A. A biomechanical comparison of four fixed-angle dorsal plates in a finite element model of dorsally-unstable radius fracture. Injury 2017;48:S41–6.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff572ddd-fd66-4e99-9e9d-9dfbf38acd7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.