PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ oczyszczalni ścieków na redukcję zanieczyszczeń odprowadzanych w czeskiej części dorzecza Odry

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Effect of wastewater treatment plants to the reduction of pollution discharged in the Czech part of the Odra river basin
Języki publikacji
PL
Abstrakty
PL
Zanieczyszczenie wód powierzchniowych w całym dorzeczu Odry jest postrzegane jako poważny problem, na który znacząco wpływa niewystarczający stopień oczyszczania ścieków w zlewniach cząstkowych w stosunku do dostępnych najnowocześniejszych technologii i celów środowiskowych dyrektywy 2000/60/WE. Do określenia wpływu przemysłowych i komunalnych oczyszczalni ścieków na redukcję odprowadzanych zanieczyszczeń w czeskiej części międzynarodowego dorzecza Odry wykorzystano metodę oceny szarego śladu wodnego. W czeskiej części dorzecza Odry przeanalizowano dane z 391 oczyszczalni ścieków w latach 2004–2018. Uzyskane wyniki pokazują, że oczyszczalnie ścieków zmniejszają nawet o 92% szary ślad wodny, tj. ilość wody potrzebnej do rozcieńczenia zanieczyszczeń odprowadzanych do odbiornika w czeskiej części dorzecza Odry.
EN
Surface water pollution is referred to be a problem in the entire Odra river basin. In sub-basins, an insufficient degree of wastewater treatment has been identified as a major problem – in relation to the best available technologies and environmental objectives of Directive 2000/60/EC. The grey water footprint indicator was used to express the influence of point sources of pollution (industrial and municipal wastewater treatment plants) on discharged pollution reduction in the Czech part of the international Odra river basin. The number of 391 records of wastewater treatment plants for the period 2004-2018 was analysed. The results show that the wastewater treatment plants reduce by up to 92% the potential water needs for dilution of pollution discharged into waters in the Czech part of the Odra river basin.
Rocznik
Strony
123--135
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Výzkumný ústav vodohospodářský T. G. Masaryka, v. v. i. Podbabská 2582/30, 160 00 Praha 6, Česká republika
  • Výzkumný ústav vodohospodářský T. G. Masaryka, v. v. i. Podbabská 2582/30, 160 00 Praha 6, Česká republika
  • Výzkumný ústav vodohospodářský T. G. Masaryka, v. v. i. Podbabská 2582/30, 160 00 Praha 6, Česká republika
  • Výzkumný ústav vodohospodářský T. G. Masaryka, v. v. i. Podbabská 2582/30, 160 00 Praha 6, Česká republika
Bibliografia
  • Alcamo, J., Flörke, M. i Märker, M. (2007). Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal, 52(2), 247-275. https://doi.org/10.1623/hysj.52.2.247
  • Ansorge, L., Stejskalová, L. i Vološinová, D. (2019). Srovnání výzkumu vodní stopy v ČR a ve světě – bibliometrická analýza. Vodohospodářské technicko-ekonomické informace, 61(6), 60-62. Pobrano z: https://www.vtei.cz/2019/12/srovnani-vyzkumuvodni-stopy-v-cr-a-ve-svete-bibliometrickaanalyza [dostęp 19.12.2019].
  • Ansorge, L., Stejskalová, L., Dlabal, J. i Kučera, J. (2019). Šedá vodní stopa jako ukazatel udržitelného vypouštění odpadních vod – případová studie Povodí Ohře. Entecho, 2(2), 12-18. https://doi.org/10.35933/ENTECHO.2019.12.001
  • Barjoveanu, G., Cojocariu, C., Robu, B. i Teodosiu, C. (2010). Integrated assessment of wastewater treatment plants for sustainable river basin management. Environmental Engineering and Management Journal, 9(9), 1251-1258. Pobrano z: http://eemj.eu/index.php/EEMJ/article/view/634 [dostęp 20.03.2020].
  • Bergier, T., Burszta-Adamiak, E., Fiałkiewicz, W., Małeck, P., Owsiany, M., Rosiek, K., Rybicki, S.M. i Wojciechowska, E. (2019). Racjonalizacja wykorzystania zasobów wodnych na terenach zurbanizowanych. Stowarzyszenie Gmin Polska Sieć „Energie Cités”. Pobrano z: http://www.sladwodnymiast.pl/images/2019/20191108/Racjonaliacja_wykorzystania_zasob%C3%B3w_wodnych_na_terenach_zurbanizowanych.pdf [dostęp 27.02.2020].
  • ČSN 75 7221. Kvalita vod. Klasifikace kvality povrchových vod.
  • Dyrektywa 2000/60/WE Parlamentu Europejskiego i Rady z dnia 23 października 2000 r. ustanawiająca ramy wspólnotowego działania w dziedzinie polityki wodnej. OJ L 327 z 22.12.2000.
  • Fiałkiewicz, W., Burszta-Adamiak, E., Malinowski, P. i Kolonko, A. (2013). Urban water Footprint – System monitorowania i oceny gospodarowania wodą w miastach. Ochrona Środowiska, 35(3), 9-12.
  • Gómez-Llanos, E., Durán-Barroso, P. i Matías-Sánchez, A. (2018). Management effectiveness assessment in wastewater treatment plants through a new water footprint indicator. Journal of Cleaner Production, 198, 463-471. https://doi.org/10.1016/j.jclepro.2018.07.062
  • Gu, Y., Dong, Y., Wang, H., Keller, A., Xu, J., Chiramba, T. i Li, F. (2016). Quantifi cation of the water, energy and carbon footprints of wastewater treatment plants in China considering a water–energy nexus perspective. Ecological Indicators, 60, 402-409. https://doi.org/10.1016/j.ecolind.2015.07.012
  • Hertel, T.W. i Liu, J. (2019). Implications of water scarcity for economic growth. W Economy-Wide Modeling of Water at Regional and Global Scales (strony 11-35). Singapore: Springer.
  • Hoekstra, A.Y. (2003). Virtual Water Trade. Proceedings of the international expert meeting on Virtual Water Trade (Value of Water Research Report Series No 12). IHE. Pobrano z: http://waterfootprint.org/media/downloads/Report12.pdf [dostęp 05.05.2015].
  • Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M. i Mekonnen, M.M. (2011). The water footprint assessment manual: Setting the global standard. Abingdon, UK: Routledge.
  • ISO 14046:2014. Environmental management. Water footprint. Principles, requirements and guidelines.
  • Johnson, M.B. i Mehrvar, M. (2019). An assessment of the grey water footprint of winery wastewater in the Niagara Region of Ontario, Canada. Journal of Cleaner Production, 214, 623-632. https://doi.org/10.1016/j.jclepro.2018.12.311
  • Keeler, B.L., Polasky, S., Brauman, K.A., Johnson, K.A., Finlay, J.C., O’Neill, A., Kovacs, K. i Dalzell, B. (2012). Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proceedings of the National Academy of Sciences, 109(45), 18619-18624. https://doi.org/10.1073/pnas.1215991109
  • Li, H., Liu, G., Yang, Z. i Hao, Y. (2016). Urban Gray Water Footprint Analysis Based on Input-Output Approach. Energy Procedia, 104, 118-122. https://doi.org/10.1016/j.egypro.2016.12.021
  • Liu, J., Yang, H., Gosling, S.N., Kummu, M., Flörke, M., Pfi ster, S., Hanasaki, N., Wada, Y., Zhang, X., Zheng, C., Alcamo, J. i Oki, T. (2017). Water scarcity assessments in the past, present and future. Earth’s Future, 5(6), 545-559. https://doi.org/10.1002/2016EF000518
  • Martínez-Alcalá, I., Pellicer-Martínez, F. i Fernández-López, C. (2018). Pharmaceutical grey water footprint: Accounting, infl uence of wastewater treatment plants and implications of the reuse. Water Research, 135, 278-287. https://doi.org/10.1016/j.watres.2018.02.033
  • Mekonnen, M.M. i Hoekstra, A.Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323. https://doi.org/10.1126/sciadv.1500323
  • Międzynarodowa Komisja Ochrony Odry przed Zanieczyszczeniem [MKOO] (2015). Aktualizacja Planu Gospodarowania Wodami dla Międzynarodowego Obszaru Dorzecza Odry na cykl planistyczny 2016-2021. Pobrano z: http://mkoo.pl/Grf/MKOO2009/PGW/PGW_2015/MKOO_Plan_MOPO_2016_2021.pdf [dostęp 20.03.2020].
  • Morera, S., Corominas, Ll., Poch, M., Aldaya, M.M. i Comas, J. (2016). Water footprint assessment in wastewater treatment plants. Journal of Cleaner Production, 112, 4741-4748. https://doi.org/10.1016/j.jclepro.2015.05.102
  • Mubako, S.T. (2018). Blue, green, and grey water quantifi cation approaches: A bibliometric and literature review. Journal of Contemporary Water Research & Education, 165(1), 4-19. https://doi.org/10.1111/j.1936-704X.2018.03289.x
  • Qin, X., Sun, C., Han, Q. i Zou, W. (2019). Grey Water Footprint Assessment from the Perspective of Water Pollution Sources: A Case Study of China. Water Resources, 46(3), 454-465. https://doi.org/10.1134/S0097807819030187
  • Shao, L. i Chen, G.Q. (2013). Water Footprint Assessment for Wastewater Treatment: Method, Indicator, and Application. Environmental Science & Technology, 47(14), 7787-7794. https://doi.org/10.1021/es402013t
  • Stejskalová, L., Ansorge, L., Kučera, J. i Vološinová, D. (2019). Využití indikátoru šedé vodní stopyk posouzení role ČOV v malém povodí. W 13. bienální konference Voda. 18-20.09.2019 Poděbrady.
  • Teodosiu, C., Barjoveanu, G., Sluser, B.R., Popa, S.A.E. i Trofi n, O. (2016). Environmental assessment of municipal wastewater discharges: A comparative study of evaluation methods. The International Journal of Life Cycle Assessment, 21(3), 395-411. https://doi.org/10.1007/s11367-016-1029-5
  • United Nations [UN] (2015). Transforming Our World: The 2030 Agenda for Sustainable Development. Pobrano z: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication [dostęp dd.mm.rr].
  • Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend, S., Satoh, Y., Vliet, M.T.H. van, Yillia, P., Ringler, C., Burek, P. i Wiberg, D. (2016). Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches. Geoscientifi c Model Development, 9(1), 175-222. https://doi.org/10.5194/gmd-9-175-2016
  • Zhu, Y., Jiang, S., Han, X., Gao, X., He, G., Zhao, Y. i Li, H. (2019). A Bibliometrics Review of Water Footprint Research in China: 2003–2018. Sustainability, 11(18), 5082. https://doi.org/10.3390/su11185082
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff52ecae-2b86-4ac9-8559-1db54b15b21e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.