PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect and mechanism of citric acid on flotation separation of siderite and hematite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heterocoagulation can occur between fine siderite and hematite particles, which would result in the low efficiency of their separation during the flotation process. To date, there have been no mature methods to increase their separation efficiency. In this paper, citric acid was used as a regulator to enhance the slurry dispersion efficiency. Micro-flotation, scanning electron microscopy (SEM) analysis, settling tests, particle size measurements, zeta potential measurements and E-DLVO theoretical calculations were conducted in the investigations. A maximum recovery difference (53.98%) between siderite and hematite in their mixtures flotation was obtained. Settling tests confirmed that citric acid contributed to improving the dispersion degree of the slurry. SEM analysis indicated that citric acid could clean the surface of particles and weaken the coagulation between siderite and hematite, which were in line with the results of particle size measurements. The zeta potential measurements and Extended-Derjaguin-Landau-Verwey-Overbeek (E-DLVO) theoretical calculations indicated that the citric acid could adsorb on the siderite and hematite surfaces and decreased the surface charge, resulting in a visible increase of the repulsion energy between siderite and hematite particles. Therefore, citric acid can be applied to remove the easily-ground carbonate minerals first to improve the flotation performance of hematite in the separation process of carbonate-containing iron ores.
Słowa kluczowe
Rocznik
Strony
311--323
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
  • College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • Liaoning key laboratory of mineral processing technology, Shenyang 110819, China
  • College of Zijin Mining, Fuzhou University, Fuzhou 350180, China
  • College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • Liaoning key laboratory of mineral processing technology, Shenyang 110819, China
  • College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
Bibliografia
  • BERGSTRÖM L., 1997. Hamaker constants of inorganic materials, Adv. Colloid Interface Sci., 70, 125-169.
  • CHEN, M., NIU, F.S., BAI, L.M., 2014. Dispersion behaviors research of three dispersants on the micro-fine hematite and quartz, China Min. Mag., 23, 116-118.
  • CLAESSON, P.M., BLOM, C.E., HERDER, P.C., NINHAM, B.W., 1986. Interactions between water-stable hydrophobic Langmuir-Blodgett monolayers on mica, J. Colloid Interface Sci., 114, 234-242.
  • GAN, W.B., CROZIER, B., LIU, Q., 2009. Effect of citric acid on inhibiting hexadecane-quartz coagulation in aqueous solutions containing Ca2+, Mg2+ and Fe3+ ions, Int. J. Miner. Process., 92, 84-91.
  • GU, H.Y., WANG, C., GONG, S.J., MEI, Y., LI, H., MA, W.M., 2016. Investigation on contact angle measurement methods and wettability transition of porous surfaces, Surf. Coat. Technol., 292, 72-77.
  • HPGG, R., HEALY, T.W., FUERSTENAU, D.W., 1966. Mutual coagulation of colloidal dispersions, Trans. Faraday Soc., 62, 1638-1651.
  • HU, Y.H., SUN, W., JIANG, Y.R., XU, J., 1998. Study on the inhibitory effect and mechanism of citric acid in the flotation separation of scheelite and fluorite, Metall. Ore Dressing Abroad, 5, 27-29.
  • HU. Y., DAI, J., 2003, Hydrophobic aggregation of alumina in surfactant solution, Miner. Eng., 16, 1167-1172.
  • ISRAELACHVILI, J., PASHLEY, R., 1982. The hydrophobic interaction is long range, decaying exponentially with distance, Nat. 300, 341-342.
  • JOSÉ, F. D. S., IMBELLONI, A. M., NOGUEIRA, F. C., PEREIRA, C. A., 2016. Nickel Ore Dispersion Evaluation and Consequences in Flotation Process, Metall. Mater. Trans. B., 47, 899-904.
  • LI, D., YIN, W.Z., LIU, Q., CAO, S.H., SUN, Q.Y., ZHAO, C., Yao, J., 2017. Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotation, Miner. Eng., 114, 74-81.
  • LI, L.X., YIN, W.Z., WANG, Y.B., TAO, S.J., 2012. Effect of siderite on flotation separation of martite and quartz, J. Cent. South Univ., 33, 431-434.
  • LI, Y., LEI, D.S., LU, W., XU, S., 2002. Effects of citric acid on separation of sillimanite from quartz, Chin. J. Nonferrous Met., 12, 979-982.
  • LI, Y.J., YANG, G., ZHAO, R.C., HAN, Y.X., YUAN, S., 2015. Feature of refractory iron ore containing siderite and its research trends of beneficiation technology, Multipurpose Util. Miner. Resour., 2, 12-25.
  • LIANG, G.J., NGUYEN, A.V., CHEN, W.M., NGUYEN, T.A.H., BIGGS, S., 2018. Interaction forces between goethite and polymeric flocculants and their effect on the flocculation of fine goethite particles, Chem. Eng. J., 334, 1034-1045.
  • LONG, T., FENG, Q.M., LU, Y.P., 2014. Dispersive mechanism of sodium hexametaphosphate on flotation of copper-nickel sulphide, Chin. J. Nonferrous Met., 22, 1763-1769.
  • LU, Y.P., LONG, T., FENG, Q.M., OU, L.M., ZHANG, G.F., 2009. Flotation and its mechanism of fine serpentine, Chin. J. Nonferrous Met., 19, 1493-1497.
  • LUO, X.M., 2014. Research on Interactive Effect among Minerals in Flotation System of Carbonate -containing Iron Ore, Northeastern University, Shenyang, China.
  • LUO, X.M., WANG, Y.F., MA, M.Z., SONG, S.X., ZHANG, Y., DENG, J.S., LIU, J., 2017. Role of dissolved mineral species in quartz flotation and siderite solubility simulation, Physicochem. Probl. Miner. Process., 53, 1241-1254.
  • LUO, X.M., WANG, Y.F., WEN, S.M., MA, M.Z., SUN, C.Y., YIN, W.Z., MA, Y.Q., 2016a. Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores, Int. J. Miner. Process., 152, 1-6.
  • LUO, X.M., YIN, W.Z., WANG, Y.F., SUN, C.Y., MA, Y.Q., LIU, J., 2016b. Effect and Mechanism of Siderite on Reverse Anionic Flotation of Quartz from Hematite, J. Cent. South Univ., 23. 52-58.
  • LUO, X.M., YIN, W.Z., SUN, C.Y., WANG, N.L., MA, Y.Q., WANG, Y.F., 2016c. Improved flotation performance of hematite fines using citric acid as a dispersant, Int. J. Miner. Metall. Mater., 23, 1119-1125.
  • OATS, W.J., OZDEMIR, O., NGUYEN, A.V., 2010. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation, Miner. Eng., 23, 413-419.
  • PUGH, R.J., KITCHENER, J.A., 1971. Theory of selective coagulation in mixed colloidal suspensions, J. Colloid Interface Sci., 35, 656-664.
  • QIU, G.Z., HU, Y.H., WANG, D.Z., 1993. Interaction between particles and fine particle flotation, Central South University Press, China.
  • SCHENKEL, J.H., KITCHENER, J.A., 1960. A test of the Derjaguin-Verwey-Overbeek theory with a colloidal suspension, Trans. Faraday Soc., 56, 161-173.
  • SHAO, A.L., 2013. Flotation separation of Donganshan carbonates-containing hematite ore, J. Cent. South Univ., 44, 456-460.
  • SILVESTRE, M.O., PEREIRA, C.A., GALERY, R., PERES, A.E.C., 2009. Dispersion effect on a lead-zinc sulphide ore flotation, Miner. Eng., 22, 752-758.
  • VAN OSS, C. J., 2006. Interfacial Forces in Aqueous Media, Marcel Dekker, New York.
  • VAN OSS, C.J., CHAUDHURY, M.K., GOOD, R.J., 1987. Monopolar surfaces, Adv. Colloid Interface Sci., 28, 35-64.
  • VAN OSS, C.J., CHAUDHURY, M.K., GOOD, R.J., 1988. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems, Chem. Rev., 88, 927-941.
  • VAN OSS, C.J., GOOD, R.J., 1989. Surface tension and the solubility of polymers and biopolymers: the role of polar and apolar interfacial free energies, J. Macromol. Sci., Pure Appl. Chem., 26, 1183-1203.
  • VAN OSS, C.J., GOOD, R.J., CHAUDHURY, M.K., 1987. Determination off the hydrophobia interaction energy-application to separation processes, Sep. Sci. Technol., 22, 1-24.
  • VAV OSS, C.J., GIESE, R.F., COSTANZO, P.M., 1990. DLVO and non-DLVO interactions in hectorite, Clays Clay Miner., 38, 151-159.
  • VERWEY, E.J., OVERBEEK, J.T.G., 1955. Theory of the stability of lyophobic colloids, J. Phys. Colloid Chem., 10, 224-225.
  • VIDELA, A.R., MORALES, R., SAINT-JEAN, T., GAETE, L., VARGAS, Y., MILLER, J.D., 2016. Ultrasound treatment on tailings to enhance copper flotation recovery, Miner. Eng., 99, 89-95.
  • WEI, R., PENG, Y.J., SEAMAN, D., 2013. The interaction of lignosulfonate dispersants and grinding media in copper-gold flotation from a high clay ore, Miner. Eng., 50-51, 93-98.
  • YANG, G., WANG, N.L., YIN, W.Z., LU, J.W., LUO, X.M., 2013. Quality Improvement and Impurity Reduction Process Optimization of Donganshan Magnetic Coarse Concentrate with Dispersant NM-1, Met. Mine., 9, 60-63.
  • YAO, J., HAN, H.L., HOU, Y., GONG, E.P., YIN, W.Z, 2016. A Method of Calculating the Interaction Energy between Particles in Minerals Flotation, Math. Probl. Eng., 1-13.
  • YIN, W.Z., HAN, Y.X., XIE, F., 2010. Flotation Separation Research on Siderite-Containing Iron Concentrate, Adv. Mater. Res., 103-109.
  • YIN, W.Z., LI, D., LUO, X.M., YAO, J., SUN, Q.Y., 2016. Effect and mechanism of siderite on reverse flotation of hematite, Int. J. Miner. Metall. Mater., 23, 373-379.
  • ZHANG, M., LIU, M.B., YIN, W.Z., HAN, Y.X., LI, Y.J., 2007. Investigation on stepped-flotation process for Donganshan carbonate-containing refractory iron ore, Met. Mine., 9, 62-64.
  • ZHANG, Z.Y., YIN, W.Z., LV, Z.F., HAN, Y.X., 2008. Influence of the Siderite in Donganshan Iron Ore on Reverse Flotation, Met. Mine., 10, 52-55.
  • ZHENG, X., SMITH, R.W., 1997. Dolomite depressants in the flotation of apatite and collophane from dolomite, Miner. Eng., 10, 537-545.
  • ZHU, J.J., YIN, W.Z., HOU, Y., WANG, N.L., YAO, J., WANG, Y.L., 2015. Experimental study on dispersion flotation of Donganshan middling containing carbonate, China Min. Mag., 24, 72-77.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff50f33f-2432-47bc-9554-f9ec8f14d421
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.