PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the micro-arc oxidation (MAO) parameters on surface properties of the hydroxyapatite and hydroxyapatite - carbon nanotube coatings formed on the Ti13Nb13Zr alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
MAO processing of titanium biomaterials for long-term implants forms oxide layers resistant to mechanical stresses during surgery, making them among the best surface modifications. Bioactivity can be enhanced using electrolytes with calcium, phosphate, or apatite; mechanical and corrosion properties can be improved by adding other compounds. This study examines effects of voltage, current, deposition time, hydroxyapatite (HA) and multi-walled carbon nanotubes (MWCNTs) in the electrolyte on Ti13Nb13Zr alloy surface properties. Methods included SEM, EDS, profilometry, hardness, corrosion, and wettability tests. CNTs improved mechanical properties, reduced corrosion resistance, slightly affected wettability. Voltage controlled plasma oxidation intensity; current affected ion/molecule mass flux.
Rocznik
Strony
38--52
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr.
Twórcy
  • Department of Biomaterials Technology, Faculty of Mechanical Engineering and Shipbuilding, Gdańsk University of Technology, Gdańsk, Poland
  • Department of Biomaterials Technology, Faculty of Mechanical Engineering and Shipbuilding, Gdańsk University of Technology, Gdańsk, Poland
  • Department of Biomaterials Technology, Faculty of Mechanical Engineering and Shipbuilding, Gdańsk University of Technology, Gdańsk, Poland
  • Department of Biomaterials Technology, Faculty of Mechanical Engineering and Shipbuilding, Gdańsk University of Technology, Gdańsk, Poland
  • Department of Biomaterials Technology, Faculty of Mechanical Engineering and Shipbuilding, Gdańsk University of Technology, Gdańsk, Poland
  • Department of Applied Mathematics, Materials Science and Engineering, and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
Bibliografia
  • 1. B. Makurat-Kasprolewicz, A. Ossowska, Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods, Mater Today Commun 34 (2023) 105425. https://doi.org/10.1016/j.mtcomm.2023.105425.
  • 2. D.B. Kwidzińska, M. Jażdżewska, D. Fydrych, The influence of selected metal oxides and laser modification on the surfaces of titanium alloys – Bibliometric and systematic review, Opt Laser Technol 184 (2025) 1 – 18. https://doi.org/10.1016/j.optlastec.2025.112592.
  • 3. M. Jażdżewska, M. Bartmański, Nanotubular oxide layer formed on helix surfaces of dental screw implants, Coatings 11 (2021) 1–10. https://doi.org/10.3390/coatings11020115.
  • 4. G. Li, F. Ma, P. Liu, S. Qi, W. Li, K. Zhang, X. Chen, Review of micro-arc oxidation of titanium alloys: Mechanism, properties and applications, J Alloys Compd 948 (2023) 169773. https://doi.org/10.1016/j.jallcom.2023.169773.
  • 5. Y. Fei, W. Yang, Z. Guo, H. Sun, F. Yang, J. Hu, Study of cell adhesion, osteogenesis, and angiogenesis of a “groove” structure micro-arc oxidation titanium, Applied Surface Science Advances 19 (2024) 100552. https://doi.org/10.1016/j.apsadv.2023.100552.
  • 6. Ł. Maj, F. Muhaffel, A. Jarzębska, A. Trelka, K. Balin, M. Bieda, H. Cimenoglu, Unveiling the mechanisms of coating formation during micro-arc oxidation of titanium in Na2HPO4 electrolyte, Surf Coat Technol 476 (2024) 130224. https://doi.org/10.1016/j.surfcoat.2023.130224.
  • 7. Ł. Maj, D. Wojtas, A. Jarzębska, M. Bieda, K. Trembecka-Wójciga, R. Chulist, W. Kozioł, A. Góral, A. Trelka, K. Janus, J. Kawałko, M. Kulczyk, F. Muhaffel, H. Çimenoğlu, K. Sztwiertnia, Titania coating formation on hydrostatically extruded pure titanium by micro-arc oxidation method, J Mater Sci Technol 111 (2022) 224–235. https://doi.org/10.1016/j.jmst.2021.09.019.
  • 8. Z.Q. Yao, Y. Ivanisenko, T. Diemant, A. Caron, A. Chuvilin, J.Z. Jiang, R.Z. Valiev, M. Qi, H.J. Fecht, Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation, Acta Biomater 6 (2010) 2816–2825. https://doi.org/10.1016/j.actbio.2009.12.053.
  • 9. P.A. Pesode, S.B. Barve, Recent advances on the antibacterial coating on titanium implant by micro-arc oxidation process, in: Mater Today Proc 47 (16) 2021 5652–5662. https://doi.org/10.1016/j.matpr.2021.03.702.
  • 10. Z.Y. Zhang, T.Y. Huang, D.J. Zhai, H.B. Wang, K.Q. Feng, L. Xiang, Study on Zn-doped antibacterial bioactive coatings on Ti6Al4V titanium alloy surfaces by micro-arc oxidation, Surf Coat Technol 467 (2023) 129724. https://doi.org/10.1016/j.surfcoat.2023.129724.
  • 11. L. Liu, F. Ma, P. Liu, S. Qi, W. Li, K. Zhang, X. Chen, Preparation and antibacterial properties of ZnSr-doped micro-arc oxidation coatings on titanium, Surf Coat Technol 462 (2023) 129469. https://doi.org/10.1016/j.surfcoat.2023.129469.
  • 12. S. Liu, C. Xia, Z. Liu, J. Ma, Y. Hu, H. Wang, C. Liang, L. Yang, H. Zhou, Micro-arc oxidation preparation of a ZnO-Se composite coating on titanium with anti-oxidation and anti-bacterial potentials for osteomyelitis control, Mater Lett 327 (2022) 132978. https://doi.org/10.1016/j.matlet.2022.132978.
  • 13. J. Yang, K. Fang, K. Xu, X. Shen, X. Xu, Effect of zinc or copper doping on corrosion resistance and anti-oxidative stress of strontium-based micro-arc oxidation coatings on titanium, Appl Surf Sci 626 (2023) 157229. https://doi.org/10.1016/j.apsusc.2023.157229.
  • 14. Z.Y. Zhang, T.Y. Huang, D.J. Zhai, H.B. Wang, K.Q. Feng, L. Xiang, Study on strontium doped bioactive coatings on titanium alloys surfaces by micro-arc oxidation, Surf Coat Technol 451 (2022) 129045. https://doi.org/10.1016/j.surfcoat.2022.129045.
  • 15. X. Shen, K. Fang, K.H. Ru Yie, Z. Zhou, Y. Shen, S. Wu, Y. Zhu, Z. Deng, P. Ma, J. Ma, J. Liu, High proportion strontium-doped micro-arc oxidation coatings enhance early osseointegration of titanium in osteoporosis by anti-oxidative stress pathway, Bioact Mater 10 (2022) 405–419. https://doi.org/10.1016/j.bioactmat.2021.08.031.
  • 16. X. Yao, X. Zhang, H. Wu, L. Tian, Y. Ma, B. Tang, Microstructure and antibacterial properties of Cu-doped TiO 2 coating on titanium by micro-arc oxidation, Appl Surf Sci 292 (2014) 944–947. https://doi.org/10.1016/j.apsusc.2013.12.083.
  • 17. J. Tang, F. Wei, L. Zhao, L. Yang, J. Li, Z. Sun, C. Yang, W. Zhang, B. Liu, Superior antibacterial properties of copper-doped titanium oxide films prepared by micro-arc oxidation, Ceram Int 50 (2024) 1370–1378. https://doi.org/10.1016/j.ceramint.2023.10.225.
  • 18. H. Li, H. Yu, C. Chen, W. Zhong, Effect of graphene oxide on corrosion resistance and biological activity of micro arc oxidation ceramic layer on titanium alloy, Mater Lett 327 (2022) 133056. https://doi.org/10.1016/j.matlet.2022.133056.
  • 19. B. Tekin, S. Dundar, S. Tekin, E. Emine Sukuroglu, Z. Khurshid, Y. Ezgi, F. Demirci, M. Faheemuddin, Effect of micro-arc oxidation coatings with graphene oxide and graphite on osseointegration of titanium implants-an in vivo study, Saudi Dental Journal 36 (2024) 591–595. https://doi.org/10.1016/j.sdentj.2024.01.013.
  • 20. F. Wang, X. Wang, E. Xie, Q. Gan, S. Ping, J. Wei, F. Li, Z. Wang, Simultaneous incorporation of gallium oxide and tantalum microparticles into micro-arc oxidation coating of titanium possessing antibacterial effect and stimulating cellular response, Biomaterials Advances 135 (2022) 212736. https://doi.org/10.1016/j.bioadv.2022.212736.
  • 21. L. Guo, C. Gao, F. Wang, J. Wei, J. Hu, Y. Xu, Influence of content of silicon nitride nanoparticles into micro-arc oxidation coating of titanium on bactericidal capability and osteoblastic differentiation, Surf Coat Technol 458 (2023) 129346. https://doi.org/10.1016/j.surfcoat.2023.129346.
  • 22. Y. Zhu, Y. Shen, Y. Xiang, K. Fang, K. Xu, P. Ma, C. Cai, J. Ma, X. Shen, Combined application of silica particles and zirconium hydrogen phosphate coating to improve the friction resistance and osteogenic/anti-inflammatory properties of micro-arc oxidation-treated titanium, Surf Coat Technol 451 (2022) 129037. https://doi.org/10.1016/j.surfcoat.2022.129037.
  • 23. M.S. Kim, J.J. Ryu, Y.M. Sung, One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation, Electrochem Commun 9 (2007) 1886–1891. https://doi.org/10.1016/j.elecom.2007.04.023.
  • 24. Y. Bai, I.S. Park, S.J. Lee, T.S. Bae, W. Duncan, M. Swain, M.H. Lee, One-step approach for hydroxyapatite-incorporated TiO 2 coating on titanium via a combined technique of micro-arc oxidation and electrophoretic deposition, Appl Surf Sci 257 (2011) 7010–7018. https://doi.org/10.1016/j.apsusc.2011.03.058.
  • 25. T.H. Qaid, S. Ramesh, F. Yusof, W.J. Basirun, Y.C. Ching, H. Chandran, S. Krishnasamy, Micro-arc oxidation of bioceramic coatings containing eggshell-derived hydroxyapatite on titanium substrate, Ceram Int 45 (2019) 18371–18381. https://doi.org/10.1016/j.ceramint.2019.06.052.
  • 26. S.S. Nisar, H.C. Choe, Plasma electrolytic oxidation coatings on mechanically cold-worked titanium in solution containing hydroxyapatite ions, Surf Coat Technol 479 (2024) 130524. https://doi.org/10.1016/j.surfcoat.2024.130524.
  • 27. W. Jing, M. Zhang, L. Jin, J. Zhao, Q. Gao, M. Ren, Q. Fan, Assessment of osteoinduction using a porous hydroxyapatite coating prepared by micro-arc oxidation on a new titanium alloy, International Journal of Surgery 24 (2015) 51–56. https://doi.org/10.1016/j.ijsu.2015.08.030.
  • 28. R. Luo, Z. Liu, F. Yan, Y. Kong, Y. Zhang, The biocompatibility of hydroxyapatite film deposition on micro-arc oxidation Ti6Al4V alloy, Appl Surf Sci 266 (2013) 57–61. https://doi.org/10.1016/j.apsusc.2012.11.074.
  • 29. A. Alsaran, G. Purcek, I. Hacisalihoglu, Y. Vangolu, O. Bayrak, I. Karaman, A. Celik, Hydroxyapatite production on ultrafine-grained pure titanium by micro-arc oxidation and hydrothermal treatment, Surf Coat Technol 205 (2011) S537 – S542. https://doi.org/10.1016/j.surfcoat.2011.03.032.
  • 30. X. Nie, A. Leyland, A. Matthews, Deposition of layered bioceramic hydroxyapatite/TiO 2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis, Surf Coat Technol 125 (1) (2000) 407-414. https://doi.org/10.1016/S0257-8972(99)00612-X
  • 31. K. Ju, Z. Zhao, X. Chen, X. Liu, J. Li, Preparation and growth behaviours of low porosity hydroxyapatite with enhanced adhesion by electrochemical deposition on micro-arc oxide coatings, Surf Coat Technol 473 (2023) 130017. https://doi.org/10.1016/j.surfcoat.2023.130017.
  • 32. K. Ju, X. Chen, Z. Zhao, Fabrication of Ti/TiO2(Ca)/hydroxyapatite bioceramic material by micro-arc oxidation and electrochemical deposition, Ceram Int 48 (2022) 19937–19943. https://doi.org/10.1016/j.ceramint.2022.03.268.
  • 33. N. Al-Harbi, M.A. Hussein, Y. Al-Hadeethi, R.I. Felimban, H.H. Tayeb, N.M.H. Bedaiwi, A.M. Alosaimi, E. Bekyarova, M. Chen, Bioactive hybrid membrane-based cellulose acetate/bioactive glass/hydroxyapatite/carbon nanotubes nanocomposite for dental applications, J Mech Behav Biomed Mater 141 (2023) 105795. https://doi.org/10.1016/j.jmbbm.2023.105795.
  • 34. B.I. Kharisov, O. V. Kharissova, L.T. González, Y.P. Méndez, I.E. Uflyand, I. Gómez de la Fuente, Hydroxyapatite composites with carbon allotropes: Preparation, properties, and applications, Particuology 88 (2024) 239–265. https://doi.org/10.1016/j.partic.2023.09.012.
  • 35. K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler, A. Agarwal, Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro, Biomaterials 28 (2007) 618–624. https://doi.org/10.1016/j.biomaterials.2006.09.013.
  • 36. J.E. Tercero, S. Namin, D. Lahiri, K. Balani, N. Tsoukias, A. Agarwal, Effect of carbon nanotube and aluminum oxide addition on plasma-sprayed hydroxyapatite coating’s mechanical properties and biocompatibility, Materials Science and Engineering C 29 (2009) 2195–2202. https://doi.org/10.1016/j.msec.2009.05.001.
  • 37. L.L. Zhang, H.J. Li, X.N. Zhao, Q. Song, J.H. Lu, S. Cao, W.F. Cao, B. Wang, In situ grown carbon nanotubes on carbon fibres and their effect on deposition of hydroxyapatite coating, Materials Technology 29 (2014) 193–197. https://doi.org/10.1179/1753555713Y.0000000077.
  • 38. M. Chen, H. Zhang, S. Shan, Y. Li, X. Li, D. Peng, Fabrication of multiwalled carbon nanotubes/carrageenan-chitosan@ Ce and Sr substituted hydroxyapatite biocomposite coating on titanium: In vivo bone formation evaluations, J King Saud Univ Sci 32 (2020) 1175–1181. https://doi.org/10.1016/j.jksus.2019.11.006.
  • 39. A. Demirel, E. Yılmaz, S. Türk, F. Çalışkan, Preparation and investigation of porous chitosan/carbon nanotube biocomposite coating by space holder method, Diam Relat Mater 138 (2023) 110217. https://doi.org/10.1016/j.diamond.2023.110217.
  • 40. K. Balani, Y. Chen, S.P. Harimkar, N.B. Dahotre, A. Agarwal, Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution, Acta Biomater 3 (2007) 944–951. https://doi.org/10.1016/j.actbio.2007.06.001.
  • 41. S. Liu, H. Li, Y. Su, Q. Guo, L. Zhang, Preparation and properties of in-situ growth of carbon nanotubes reinforced hydroxyapatite coating for carbon/carbon composites, Materials Science and Engineering C 70 (2017) 805–811. https://doi.org/10.1016/j.msec.2016.09.060.
  • 42. A. Abrishamchian, T. Hooshmand, M. Mohammadi, F. Najafi, Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: An in vitro study, Materials Science and Engineering C 33 (2013) 2002–2010. https://doi.org/10.1016/j.msec.2013.01.014.
  • 43. Z. Albaraqaawee, S.A. Abdulsada, A.I. Al-Mosawi, Analysis of coated samples containing hydroxyapatite/multiwalled carbon nanotubes on 2205 DSS substrate, Fullerenes Nanotubes and Carbon Nanostructures 32 (2024) 603–610. https://doi.org/10.1080/1536383X.2024.2309943.
  • 44. S. Singh, A. Kumar, M. Kamboj, B. Das, K. Rakha, H. Singh, Corrosion behaviour of plasma-sprayed baghdadite bioceramic coatings reinforced with carbon nanotubes, J Alloys Compd 976 (2024) 173094. https://doi.org/10.1016/j.jallcom.2023.173094.
  • 45. N. Horandghadim, Y. Ghazanfar-Ahari, J. Khalil-Allafi, Multiwalled-carbon nanotubes reinforced hydroxyapatite- tantalum pentoxide nanocomposite coating on Nitinol alloy: Antibacterial activity and Electrochemical properties, Surfaces and Interfaces 29 (2022) 101773. https://doi.org/10.1016/j.surfin.2022.101773.
  • 46. H. Maleki-Ghaleh, J. Khalil-Allafi, Characterization, mechanical and in vitro biological behavior of hydroxyapatite-titanium-carbon nanotube composite coatings deposited on NiTi alloy by electrophoretic deposition, Surf Coat Technol 363 (2019) 179–190. https://doi.org/10.1016/j.surfcoat.2019.02.029.
  • 47. L. Nematzadeh, N. Horandghadim, V. Khalili, J. Khalil-Allafi, In Vitro Biological Characterization of Natural Hydroxyapatite/Single-Walled Carbon Nanotube Composite Coatings Synthesized by Electrophoretic Deposition on NiTi Shape Memory Alloy, J Mater Eng Perform 29 (2020) 6170–6180. https://doi.org/10.1007/s11665-020-05094-0.
  • 48. D. Sivaraj, K. Vijayalakshmi, Novel synthesis of bioactive hydroxyapatite/f-multiwalled carbon nanotube composite coating on 316L SS implant for substantial corrosion resistance and antibacterial activity, J Alloys Compd 777 (2019) 1340–1346. https://doi.org/10.1016/j.jallcom.2018.10.341.
  • 49. D. Sivaraj, K. Vijayalakshmi, Enhanced antibacterial and corrosion resistance properties of Ag substituted hydroxyapatite/functionalized multiwall carbon nanotube nanocomposite coating on 316L stainless steel for biomedical application, Ultrason Sonochem 59 (2019) 104730. https://doi.org/10.1016/j.ultsonch.2019.104730.
  • 50. S. Arul Xavier, U. Vijayalakshmi, Electrochemically grown functionalized -Multi-walled carbon nanotubes/hydroxyapatite hybrids on surgical grade 316L SS with enhanced corrosion resistance and bioactivity, Colloids Surf B Biointerfaces 171 (2018) 186–196. https://doi.org/10.1016/j.colsurfb.2018.06.058.
  • 51. S. Hassan, A.Y. Nadeem, H. Qaiser, A.S. Kashif, A. Ahmed, K. Khan, A. Altaf, A review of carbon-based materials and their coating techniques for biomedical implants applications, Carbon Letters 33 (2023) 1171–1188. https://doi.org/10.1007/s42823-023-00496-1.
  • 52. N. Horandghadim, Y. Ghazanfar-Ahari, J. Khalil-Allafi, Multiwalled-carbon nanotubes reinforced hydroxyapatite- tantalum pentoxide nanocomposite coating on Nitinol alloy: Antibacterial activity and Electrochemical properties, Surfaces and Interfaces 29 (2022) 101773. https://doi.org/10.1016/j.surfin.2022.101773.
  • 53. L. Singh, P.K. Singh, V. Singh, Synthesis and characterization of carbon nanotube reinforced hydroxyapatite ceramics proposed for biomedical applications, Mater Today Proc 60 (2) (2022) 1150–1155. https://doi.org/10.1016/j.matpr.2022.02.529.
  • 54. J. Sypniewska, M. Szkodo, B. Majkowska-Marzec, Ł. Pawłowski, A. Mirowska, J. Ryl, A. Mielewczyk-Gryń, Ł. Gaweł, E.M. Campos, J.P. Fernández Hernán, Hybrid laser-micro-arc oxidation techniques for enhanced biocompatibility and surface modification of Ti13Nb13Zr alloy in biomedical applications, Appl Surf Sci 698 (2025) 163136. https://doi.org/10.1016/j.apsusc.2025.163136.
  • 55. M.S. Kim, J.J. Ryu, Y.M. Sung, One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation, Electrochem Commun 9 (2007) 1886–1891. https://doi.org/10.1016/j.elecom.2007.04.023.
  • 56. Y. Bai, I.S. Park, S.J. Lee, T.S. Bae, W. Duncan, M. Swain, M.H. Lee, One-step approach for hydroxyapatite-incorporated TiO 2 coating on titanium via a combined technique of micro-arc oxidation and electrophoretic deposition, Appl Surf Sci 257 (2011) 7010–7018. https://doi.org/10.1016/j.apsusc.2011.03.058.
  • 57. Y. Bai, K.A. Kim, I.S. Park, S.J. Lee, T.S. Bae, M.H. Lee, In situ composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing, Materials Science and Engineering: B 176 (2011) 1213–1221. https://doi.org/10.1016/j.mseb.2011.06.019.
  • 58. K. Ju, Z. Zhao, X. Chen, X. Liu, J. Li, Preparation and growth behaviours of low porosity hydroxyapatite with enhanced adhesion by electrochemical deposition on micro-arc oxide coatings, Surf Coat Technol 473 (2023) 130017. https://doi.org/10.1016/j.surfcoat.2023.130017.
  • 59. K. Ju, X. Chen, Z. Zhao, Fabrication of Ti/TiO2(Ca)/hydroxyapatite bioceramic material by micro-arc oxidation and electrochemical deposition, Ceram Int 48 (2022) 19937–19943. https://doi.org/10.1016/j.ceramint.2022.03.268.
  • 60. Y. Bai, K.A. Kim, I.S. Park, S.J. Lee, T.S. Bae, M.H. Lee, In situ composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing, Materials Science and Engineering: B 176 (2011) 1213–1221. https://doi.org/10.1016/j.mseb.2011.06.019.
  • 61. A. Ładniak, M. Jurak, A.E. Wiącek, Physicochemical characteristics of chitosan-TiO2 biomaterial. 2. Wettability and biocompatibility, Colloids Surf A Physicochem Eng Asp 630 (2021) 127546. https://doi.org/10.1016/j.colsurfa.2021.127546.
  • 62. K.L. Menzies, L. Jones, The impact of contact angle on the biocompatibility of biomaterials, Optometry and Vision Sci. 87 (2010) 387–399. https://doi.org/10.1097/OPX.0b013e3181da863e.
  • 63. Y. Li, Y. Yang, Y. Qing, R. Li, X. Tang, D. Guo, Y. Qin, Enhancing zno-np antibacterial and osteogenesis properties in orthopedic applications: A review, Int J Nanomedicine 15 (2020) 6247–6262. https://doi.org/10.2147/IJN.S262876.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff50168e-a7e8-49b5-b1fc-e363dc08a8bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.