PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative studies of the optical absorption coefficient spectra in the implanted layers in silicon with the use of nondestructive spectroscopic techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents results of comparative studies of the optical absorption coefficient spectra of ion implanted layers in silicon. Three nondestructive and noncontact techniques were used for this purpose: spectroscopic ellipsometry (SE), modulated free carriers absorption (MFCA) and the photo thermal radiometry (PTR). Results obtained with the ellipsometric method are the proof of correctness of the results obtained with the MFCA and PTR techniques. These techniques are usually used for investigations of recombination parameters of semiconductors. They are not used for investigations of the optical parameters of semiconductors. Optical absorption coefficient spectra of Fe+ and Ge+ high energy and dose implanted layers in silicon, obtained with the three techniques, are presented and compared.
Rocznik
Strony
323--337
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Department of Mechatronics and Automation, Śniadeckich 2, 75-453 Koszalin, Poland
  • Koszalin University of Technology, Faculty of Electronics and Computer Sciences, Śniadeckich 2, 75-453 Koszalin, Poland
  • Koszalin University of Technology, Faculty of Electronics and Computer Sciences, Śniadeckich 2, 75-453 Koszalin,Poland
Bibliografia
  • [1] Tadjer, M.J., Fares, Ch., Mahadik, N.A., Freitas Jr., J.A., Smith D., Sharma R., Law M.E., Ren, F., Pearton, S.J., Kuramata A. (2019). Damage Recovery and Dopant Diffusion in Si and Sn Ion Implanted-Ga2O3. ECS Journal of Solid State Science and Technology, 8(7), Q3133-Q3139.
  • [2] Chalifoux, B.D., Yao, Y., Woller, K.B., Heilmann, R.K., Schattenburg, M.L. (2019). Compensating film stress in thin silicon substrates using ion implantation. Optics Express, 27(8), 11182-11195.
  • [3] Hirose, R., Kadono, T., Okuyama, R., Shigematsu, S., Onaka-Masada, A., Okuda, H., Koga, Y., Kurita,K. (2018). Proximity gettering of silicon wafers using CH3O multielement molecular ion implantation technique. Japanese Journal of Applied Physics, 57(9), 096503.
  • [4] Stepanov, A.L., Vorobev, V.V., Nuzhdin, V.I., Valeev, V.F., Osin, Y.N. (2017). Characterization of the Surface of Silver Ion-Implanted Silicon by Optical Reflectance. Journal of Applied Spectroscopy, 84(5), 785-789.
  • [5] Crecelius, G., Radermacher, K., Dieker, Ch. (1993). Reaction of iron and silicon during ion implantation. Journal of Applied Physics, 73(10), 4848-4851.
  • [6] Souza, J.P., Amaral, L. (1992). Recrystallization behavior of silicon implanted with iron. Journal of Applied Physics, 71(11), 5423-5426.
  • [7] Omae, K., Bae, I., Naito, M., Ishimaru, M., Hirotsu, Y., Valdez, J., Sickafus, K. (2006). Structural evolution in Fe ion implanted Si upon thermal annealing. Nuclear Instruments and Methods in Physics Research B, 250(1), 300-302.
  • [8] Markwitz, A., Kant, K., Carder, D., Johnson, P.B. (2009, July). Low-energy Fe+ ion implantation into silicon nanostructures. AIP Conference Proceedings, 1151, 149-152.
  • [9] Yilgin, R., Yurtisigi, M.K., Parabas, A., Turksoy, M., Ozdemir, M., Aktas, B., Kolitsch, A. (2012). Ferromagnetic Behavior of Fe+ Implanted Si (100) Semiconductor. Journal of superconductivity and novel magnetism, 25(8), 2731-2735.
  • [10] Sobolev, N.A., Aleksandrov, O. V., Sakharov, V.I., Serenkov, I.T., Shek, E.I., Kalyadin, A.E.,Parshin, O., Melesov, N.S. (2019). Influence of Annealing Temperature on Electrically Active Centers in Silicon Implanted with Germanium Ions. Semiconductors, 53(2), 153-155.
  • [11] Voelskow, M., Stoimenos, I., Rebohle, L., Skorupa, W. (2011). The formation of near surface SiGe layers with combined high-dose ion implantation and flash-lamp annealing. Physica Status Solidi C Current Topics, 8, 960-963.
  • [12] Gao, K., Prucnal, S., Mücklich, A., Skorupa, W., Zhou, S. (2013). Fabrication of Si 1-x Ge x alloy on silicon by Ge-Ion-implantation and short-time-annealing. Acta Physica Polonica A, 123(5), 858-861.
  • [13] Impellizzeri, G., Mirabella, S., Grimaldi, M. G. (2011). Ion implantation damage and crystalline-amorphous transition in Ge. Applied Physics A, 103(2), 323-328.
  • [14] Dedyulin, S.N., Goncharova, L.V. (2012). Thermal oxidation of Ge-implanted Si: Role of defects. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 272, 334-337.
  • [15] Gauster, W.B., Bushnell, J.C. (1970). Laser-induced infrared absorption in silicon. Journal of Applied Physics, 41(9), 3850-3853.
  • [16] Glunz, S.W., Warta, W. (1995). High-resolution lifetime mapping using modulated free-carrier absorption. Journal of Applied Physics, 77(7), 3243-3247.
  • [17] Glunz, S.W., Sproul, A.B., Warta, W., Wettling, W. (1994). Injection-level-dependent recombination velocities at the Si–SiO2 interface for various dopant concentrations. Journal of Applied Physics,75(3), 1611-1615.
  • [18] Sanii, F., Giles, F.P., Schwartz, R.J., Gray, J.L. (1992). Contactless nondestructive measurement of bulk and surface recombination using frequency-modulated free carrier absorption. Solid-State Electronics, 35(3), 311-317.
  • [19] Nordal, P.E., Kanstad, S.O. (1979). Photothermal radiometry. Physica Scripta, 20(5-6), 659.
  • [20] Pham Tu Quoc, S., Cheymol, G., Semerok, A. (2014). New contactless method for thermal diffusivity measurements using modulated photothermal radiometry. Review of Scientific Instruments, 85(5), 054903.
  • [21] Kusiak, A., Martan, J., Battaglia, J.L., Daniel, R. (2013). Using pulsed and modulated photothermal radiometry to measure the thermal conductivity of thin films. Thermochimica Acta, 556, 1-5.
  • [22] Pawlak, M., Horny, N., Scholz, S., Ebler, C., Ludwig, A., Wieck, A. D. (2018). Simultaneous measurement of infrared absorption coefficient of carbon doped A10.33Ga0.67As thin film and thermal boundary resistance between thin film and heavily Zn doped GaAs using spectrally-resolved modulated photothermal infrared radiometry. Thermochimica Acta, 667, 73-78.
  • [23] Pawlak, M., Pal, S., Scholz, S., Ludwig, A., Wieck, A.D. (2018). Simultaneous measurement of thermal conductivity and diffusivity of an undoped A10. 33Ga0. 67As thin film epitaxially grown on a heavily Zn doped GaAs using spectrally-resolved modulated photothermal infrared radiometry. Thermochimica Acta, 662, 69-74.
  • [24] Chrobak, L., Malinski, M. (2018). Comparison of three nondestructive and contactless techniques for investigations of recombination parameters on an example of silicon samples. Infrared Physics and Technology, 91, 1-7.
  • [25] Malinski, M., Chrobak, L., Madej, W., Kukharchyk, N., Au2+-implanted regions in silicon visualized using a modulated free-carrier absorption method, International Journal of Thermophysics, 38(110).
  • [26] Chrobak, Ł., Malinski, M. (2018). Properties of Silicon Implanted with Fe+, Ge+, Mn+ Ions Investigated Using a Frequency Contactless Modulated Free-Carrier Absorption Technique. Optical Materials, 86, 484-491.
  • [27] Malinski, M., Pawlak, M., Pal, S., Ludwig, A. (2015). Monitoring of amorfization of the oxygen implanted layers in silicon wafers using photothermal radiometry and modulated free carrier absorption methods. Applied Physics A, 118(3), 1009-1014.
  • [28] Malinski, M., Pawlak, M. (2014). Measurements of the optical absorption coefficient of Ar8+ ion implanted silicon layers using the photothermal radiometry and the modulated free carrier absorption methods. Infrared Physics & Technology, 67, 604-608.
  • [29] Chrobak, L., Malinski, M. (2019). On Investigations of the Optical Absorption Coefficient of Gold and Germanium Implanted Silicon with the Use of the Non-destructive Contactless Photo Thermal Infrared Radiometry. Journal of Electronic Materials, 48(8), 5273-5278.
  • [30] Fujiwara, H. (2007). Spectroscopic ellipsometry: principles and applications. John Wiley & Sons.
  • [31] Adams, J.R., Bashara, N.M. (1975). Determination of the complex refractive index profiles in P+31 ion implanted silicon by ellipsometry. Surface Science, 49(2), 441-458.
  • [32] Lohner, T., Mezey, G., Kotai, E., Paszti, F., Manuaba, A., Gyulai, J. (1983). Characterization of ion implanted silicon by ellipsometry and channeling. Nuclear Instruments and Methods in Physics Research, 209, 615-620.
  • [33] Fried, M., Lohner, T., Aarnink, W.A.M., Hanekamp, L.J., van Silfhout, A. (1992). Determination of complex dielectric functions of ion implanted and implanted-annealed amorphous silicon by spectroscopic ellipsometry. Journal of Applied Physics, 71(10), 5260-5262.
  • [34] Giri, P. K., Tripurasundari, S., Raghavan, G., Panigrahi, B.K., Magudapathy, P., Nair, K.G.M., Tyagi, A.K. (2001). Crystalline to amorphous transition and band structure evolution in ion-damaged silicon studied by spectroscopic ellipsometry. Journal of Applied Physics, 90(2), 659-669.
  • [35] Kurihara, K., Hikino, S.I., Adachi, S. (2004). Optical properties of N+ ion-implanted and rapid thermally annealed Si (100) wafers studied by spectroscopic ellipsometry. Journal of Applied Physics, 96(6), 3247-3254.
  • [36] Petrik, P., Polgár, O., Fried, M., Lohner, T., Khánh, N.Q., Gyulai, J. (2003). Ellipsometric characterization of damage profiles using an advanced optical model. Journal of Applied Physics, 93(4), 1987-1990.
  • [37] Petrik, P. (2008). Ellipsometric models for vertically inhomogeneous composite structures. Physica Status Solidi (A) Applications and Materials Science, 205(4), 732-738.
  • [38] Dorywalski, K., Andriyevsky, B., Piasecki, M., Kityk, I. (2017). Parametrized optical functions of strontium barium niobate crystals in the vacuum ultraviolet spectral range. Journal of Applied Physics, 122(11).
  • [39] Dorywalski, K., Lemée, N., Andriyevsky, B., Schmidt-Grund, R., Grundmann, M., Piasecki, M., Bousquet, M., Krzyzynski, T. (2017). Optical properties of epitaxial Na0:5Bi0:5TiO3 lead-free piezoelectric thin films: ellipsometric and theoretical studies. Applied Surface Science, 421, 367-372.
  • [40] Dorywalski, K., Andriyevsky, B., Piasecki, M., Lemee, N., Patryn, A., Cobet, C., Esser, N. (2013). Ultraviolet vacuum ultraviolet optical functions for SrTiO3 and NdGaO3 crystals determined by spectroscopic ellipsometry. Journal of Applied Physics, 114 (4), 043513.
  • [41] Andriyevsky, B., Piasecki, M., Dorywalski, K., Cobet, C., Esser, N., Świrkowicz, M., Majchrowski, A., Jaroszewicz, L.R., Kityk, I.V. (2013). Specific features of Yb3+ ions in electronic band structure and optical functions of RbNd(WO4)2 crystals: synchrotron ellipsometry measurement and DFT simulations, Journal of Alloys and Compounds, 577, 237-246.
  • [42] Dorywalski, K., Andriyevsky, B., Cobet, C., Piasecki, M., Kityk, I.V., Esser, N., Łukasiewicz, T., Patryn, A. (2013). Ellispometric study of near band gap optical properties of SrxBa1-xNb2O6 crystals.Optical Materials. 35(5), 887-892
  • [43] Azzam R.M.A., Bashara N.B. (1987). Ellipsometry and polarized light, Amsterdam: North-Holland Pub. Co.
  • [44] Shamiryan, D., Likhachev, D.V. (2012). Ion Implantation. Goorsky, M. (eds.). Spectroscopic ellipsometry of ion-implantation-induced damage. Rijeka: InTech, 89-104.
  • [45] Radisic, D., Shamiryan, D., Mannaert, G., Boullart, W., Rosseel, E., Bogdanowicz, J., Goossens, J., Marrant, K., Bender, H., Sonnemans, R., Berry, I. (2009). Metrology for implanted Si substrate and dopant loss studies. ECS Transactions, 25(5), 367-374.
  • [46] Radisic, D., Shamiryan, D., Mannaert, G., Boullart, W., Rosseel, E., Bogdanowicz, J., Goossens, J., Marrant, K., Bender, H., Sonnemans, R., Berry, I. (2010). Metrology for implanted Si substrate loss studies, Journal of Electrochemical Society, 157 (5), H580-H584.
  • [47] Shamiryan, D., Radisic, D., Boullart, W. (2010). In-line control of Si loss after post ion implantation strip. Microelectronic engineering, 87(9), 1669-1673.
  • [48] Webb, A.P., Townsend, P.D. (1976). Refractive index profiles induced by ion implantation into silica. Journal of Physics D: Applied Physics, 9(9), 1343-1354.
  • [49] Jellison Jr, G.E., Modine, F.A. (1996). Parameterization of the optical functions of amorphous materials in the interband region. Applied Physics Letters, 69(3), 371-373.
  • [50] Ferlauto, A.S., Ferreira, G.M., Pearce, J.M., Wronski, C. R., Collins, R.W., Deng, X., Ganguly, G. (2002). Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics. Journal of Applied Physics, 92(5), 2424-2436.
  • [51] Herzinger, C.M., Johs, B., McGahan, W.A., Woollam, J.A., Paulson, W. (1998). Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation. Journal of Applied Physics, 83(6), 3323-3336.
  • [52] Hale, J., Johs, B. (2011). CompleteEASE™ Data Analysis Manual. Lincoln: J.A. Woollam Co.
Uwagi
EN
1. We thank Dr. Nadezhda Kukharchyk for preparation of the silicon implanted samples and Evgeny Krüger from Universität Leipzig for performing ellipsometry measurements. K. Dorywalski gratefully acknowledges the partial funding by the National Science Centre, Poland, under grant no. 2018/02/X/ST5/02508.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff4ea86a-a863-4787-9ac0-70d66abdbb12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.