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APPROXIMATION OF THE ELLIPSE OFFSET CURVES IN TURBO 

ROUNDABOUTS DESIGN 

Anna BOROWSKA 

Bialystok University of Technology, Faculty of Computer Science 

ul. Wiejska 45A, 15-351 Bialystok 

e-mail: a.borowska@pb.edu.pl 

 

Abstract. The elliptical turbo roundabouts are a safer and more effective alternative to the 

known multi-lane roundabouts. This paper contains the results of numerical analysis for 

the problem of approximation of the offset curves off(el(a, b); s) of an ellipse el(a, b) at 

distance s by ellipses el1(a+s, b+s) and el2(a-s, b-s). We considered the ellipses which can be 

used to shape the turbo roundabouts. It was tested for which parameter values s (the width 

of the lane) and e (eccentricity) the maximum deviation of the ellipse offset curve from the 

ellipse el1 (el2) does not exceed the accuracy of the delineating the curves in the terrain. 

Keywords: ellipse offset curve, accuracy of delineating, turbo roundabout 

1 Introduction 

In this paper the studies from [1] and [2] are continued. The article contains mathematical 

facts helpful in designing elliptical turbo roundabouts. The possibility of approximating offset 

curves off(el(a, b); s) (of an ellipse el(a, b) at distance s) by ellipses el1(a+s, b+s) and el2(a-s, 

b-s) (for any values a, b, s) was numerically analyzed. The ellipses which can be used 

to shape the turbo roundabouts were considered in particular. It was tested for which 

parameter values s, e (
2

)(1 abe −= ) the maximum deviation of the ellipse offset curve 

from the ellipse el1 (el2) does not exceed the accuracy of the delineating the curves in the 

terrain. 

Let us assume that P is any point on the ellipse el and l is the normal line to el at the point P. 

Points P1 and P2 lie on the normal l at distance s from P. Q1, Q2 are the intersection points 

of the normal line l with ellipses el1 and el2 respectively. In section 3 useful formulas 

for coordinates of points P1, P2, Q1 and Q2 (for any point P, i.e. for any angle t) were 

determined. 

2 Elliptical turbo roundabouts 

The ellipse offset curves are used, among other things, in the designing of two-lane turbo-

 

Figure 1: The typical turbo roundabout      Figure 2: The ellipse offset curves 
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roundabouts. The turbo roundabout was invented in the Netherlands in 1996 as a safer and 

more efficient alternative to the standard multi-lane roundabouts (cf. [7]). The vehicle 

entering the interior lane of such roundabout, after crossing the axis is automatically (without 

any collision) located in the outer lane (cf. [2]). The tracks of the vehicles do not intersect 

at the turbo roundabouts and giving right of way only occurs when the vehicle enters 

the roundabout. The shape of the central island (which we are analyzing) consists of two 

halves of an ellipse shifted by the width of the lane. The turbo roundabouts with the elliptical 

central island are especially recommended when one traffic direction is dominant in terms 

of the intensity (cf. [2]). The larger difference in the strength of the intensity of two traffic 

directions, the more flattened an ellipse should be used. The ellipse graph (shaping the central 

island) should be in the circle ring determined by the minimum and maximum radius of the 

circle allowed by the guidelines [9] for the central island of the given roundabout type 

(cf. [2]). The precision of the delineating of the curves in the terrain (by using modern 

electronic theodolites) is ±1cm. 

3 Mathematical formulas 

Let c(t)=(x(t), y(t)) (t∈[α, β]) be a parametric representation of a planar curve (we write down 

functions x(t), y(t) as xt, yt). The normal vector to the curve c(t) at the point P(xt,yt) is of 

the form ],[n ''
tt xy−= . The unit normal vector at the point P(xt,yt) is as follows (cf. [8] p.335, 

[3]) 

 
2'2'

''

ver
)()(

],[
n

tt

tt

yx

xy

+

−
= . (1) 

Lemma 1 (cf. [4]): 

 arccos(x)+arcsin(x) = π/2 for x∈[-1, 1] (2) 

 If x+y > 0 then arccos(x)+arccos(y) = arccos(xy – )1)(1( 22
yx −− ). (3) 

Lemma 2: If arccos(x) = arcsin(y) and x+y > 0 then 122 =+ yx . 

Justification. Let arccos(x) = arcsin(y). From (2) and (3) we obtain arccos(x)+arccos(y) = π/2 

⇒   arccos(xy – )1)(1( 22
yx −− ) = arccos(0)   ⇒   xy = )1)(1( 22

yx −−    ⇒   122 =+ yx . 

For a smooth planar curve c, we define an offset curve cd at distance d in the following 

way. On each curve normal, we mark the two points that are at distance d from the curve c. 

The set of all of these points forms the offset cd = ( '
dc ∪ ''

dc ) (cf. [8] p. 335, [5]). The offset 

)(tcd  at distance d to c(t) is obtained as (cf. [8] p. 335) )(n)()( ver tdtctcd ±= . 

The curve c and its offset curves '
dc  and ''

dc  are not always of the same type. 

The offset cd of an ellipse c is not a pair of ellipses. We can show this fact by drawing three 

concentric ellipses el(a, b), el1(a+s, b+s), el2(a-s, b-s) and the normal l to the ellipse el at any 

point P (see Figure 2). The interesting offset surfaces (offset curves) are described in [5] and 

[6]. 

Let points P1 and P2 lie on the normal l at distance s from P. Q1, Q2 are the 

intersection points of the normal line l with ellipses el1 and el2 respectively. Non-zero 

distances || 1111
QPd QP =  and || 2222

QPd QP =  mean that ellipses el1 and el2 do not keep 

a constant distance s regarding the basic ellipse el at points not lying on the axes of 

the coordinate system. 
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3.1 The coordinates of points P1 and P2 

The coordinates of points P1 and P2 lying on the normal l to the ellipse e(t) (at the point P(xt, 

yt)) and distant from P by the length s were determined using the equation of offset curves. 

Let us take the parametric equations of the ellipse e(t): )cos(tax = , )sin(tby = , ]2,0[ π∈t . 

The unit normal vector to e(t) at the point P(xt, yt) is of the form 

 
2424

22

2222
ver

],[

)(sin)(cos

)]sin(),cos([
n

tt

tt

yaxb

yaxb

tatb

tatb

+

−−
=

+

−−
=    for   





=

=

)sin(

)cos(

tby

tax

t

t
. (4) 

The equation of the offset curves off(e(t); s) is as follows 
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Finally we obtain coordinates of points P1 and P2 lying on l and distant from P by the length 

s. 
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3.2 The coordinates of the point Q1 

The coordinates of the point Q1 (the intersection of the normal line l to the ellipse e(t) at the 

point P(xt, yt) with the ellipse el1(a+s, b+s)) were determined as follows. Let us write down 

the parametric equations of the normal line l to the ellipse e(t) at the point P. Points P and P1 

lie on the normal line l. Hence 

 
v

hs
xx t

+
+=

1
, 

v

vhs
yy t

+
+=

1
, where )cos(taxt = , )sin(tbyt = , )2/,0[ π∈t . (7) 

Let us set the parameter h giving the intersection points of the line l with ellipse el1(a+s, b+s). 
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Hence and from lemma 2: 1)(
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 0>∆ , ABh 2)(1 ∆+−=  (the parameter for the point Q1), ABh 2)(2 ∆−−= . (12) 

The coordinates of the point Pk1 lying on the normal line l and distant from P by the length s-k 
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 (cf. (3)). (13) 

Lemma 3: (a) The coordinates of the points P, Pk1, P1 and Q1 can be determined using the 

parametric equations (7) of the normal line l to the ellipse el(a, b) at the point P(xt, yt) for the 

parameter h equal respectively h=0, h=(s-k)/s, h=1 and h=h1 (cf. (12)). 

(b) kd QP ≤
11

 iff sksh )(1 −≥ . 

Justification (b). The property results from the fact that points Pk1, P1 and Q1 lie on the normal 

l. 

Example 1 a=25, b=17, s=3.5, k=0.01, t=35 

h=0, xt=20.4788011072248 yt=9.75079941796778 

h=(s-k)/s=0.997142857142857, xPk1=22.9102122371578 yPk1=12.2544647145356 

h=1, xP1=22.9171790312264 yP1=12.2616385406002 

h=h1=0.98465895377262, xQ1=22.8797717627745 yQ1=12.2231196415504 

dP1Q1=0.0536936617958302 

3.3 The coordinates of the point Q2 

The coordinates of the point Q2 (the intersection of the normal line l to the ellipse e(t) 

at the point P(xt, yt) with the ellipse el2(a-s, b-s)) were determined as follows. Let us write 

down the parametric equations of the normal line l to the ellipse e(t) at the point P. Points P 

and P2 lie on the normal line l. Hence 

 
v
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xx t

+
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1
, 

v

vhs
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+
−=

1
, where )cos(taxt = , )sin(tbyt = , )2/,0[ π∈t  (14) 

Let us set the parameter h giving the intersection points of the line l with ellipse el2(a-s, b-s). 
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By conducting analogous calculations as in 3.2 we get the equation 
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22222

2

)()()()(
1

4
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v

s
∆ . (18) 

 For 0>∆ , ABh 2)(1 ∆+−= , ABh 2)(2 ∆−−=  (the parameter for the point Q2).(19) 

Lemma 4: (a) The coordinates of the points P, Pk2, P2 and Q2 can be determined using 

the parametric equations (14) of the normal line l to the ellipse el(a, b) at the point P(xt, yt) for 

the parameter h equal respectively h=0, h=(s-k)/s, h=1 and h=h2 (cf. (19)). 

(b) kd QP ≤
22

 iff sksh )(2 −≥  (cf. (19)).  

Justification (b). The property results from the fact that points P2 and Q2 lie on the normal l. 

Example 2 a=25, b=17, s=3.5, k=0.01, t=65 

h=0, xt=10.5654565435175 yt=15.407232379623 

h=(s-k)/s=0.997142857142857 xPk2=9.51057699269641 yPk2=12.0804728251527 

h=1, xP2=9.50755441518689 yP2=12.070940562819 

h=h2=0.989805472012358 xQ2=9.51833925489295 yQ2=12.1049525677987 

dP2Q2=0.0356809367902093 
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4 Parameter analysis for the ellipse offset curves 

Fact 1. We shall say that the approximation of the ellipse offset curve off(el(a, b); s) by 

the ellipse el1 (el2) is satisfactory, if for any point P of the ellipse el there is 
11QPd ≤ k 

(
22QPd ≤ k) for k=0.01, i.e. when the deviation 

11QPd  (
22QPd ) does not exceed the accuracy 

of the delineating the curves in the terrain. 

Section 4 contains the results of numerical analysis for the problem of approximation 

of the offset curves off(el(a, b); s) by ellipses el1 and el2. In order to check if 

the approximation of the given offset curve off(el(a, b); s) by the ellipse el1 (el2) is 

satisfactory, we have to solve one of the following problems. 

Problem 1. We have the semi-minor axis b, the width of the lane s and k=0.01. For the ellipse 

offset curve off(el(a, b); s) we need to find 

(A) such eccentricity eMax that for e∈[0, eMax] and any point P of the ellipse el 
11QPd (e)≤0.01. 

(B) such eccentricity eMax that for e∈[0, eMax] and any point P of the ellipse el 
22QPd (e)≤0.01. 

Problem 2. We have the semi-minor axis b, eccentricity e and k=0.01. For the ellipse offset 

curve off(el(a, b); s) we need to find 

(C) such a distance sMax that for s∈[0.5, sMax] and any point P of the ellipse el )(
11

sd QP ≤0.01. 

(D) such a distance sMax that for s∈[0.5, sMax] and any point P of the ellipse el )(
22

sd QP ≤0.01. 

The problem 1 was resolved in the following way. For established values b, s and 

consecutive angles t∈[0, π/2) we have determined the largest possible values of 

the eccentricity emax such that the deviation kd QP ≤
11

 ( kd QP ≤
22

). Next, from among 

the determined values emax we selected the smallest one (the value eMax). If (for given b and s) 

we choose e∈[0, eMax] (a∈[b, aMax]) then the approximation of the offset curve off(el(a, b); s) 

by the ellipse el1 (el2) will be satisfactory. It turned out that for the ellipse offset curves 

(which can be used to shape the turbo roundabouts) the values eMax occur for a specific angle 

t. The problem 2 was resolved similarly. 

We introduce abbreviations: [RAR] – We start delineating the roundabout from 

the axis of the road. [RCI] – We start delineating the roundabout from the edge of the central 

island. 

4.1 Parameter t 

Test 1. The ellipse offset curves which can be used to shape the roundabouts (approved in [9]) 

were considered. In the case of a larger offset curve, the calculations were made for b=8.5, 9, 

…, 23.5m (i.e. each possible central island size (approved in [9]) was considered). In the case 

of a smaller offset curve, the calculations were made for b=16, 16.5, …, 32.5m (for each 

possible ellipse representing the road axis (or outer line) of the roundabout (approved in [9])). 

The width of the lane s was tested from 3.5m to 11m (every 0.5m). The eccentricity e was 

taken from 0 to 0.95 (every 0.05). The angle t∈[0, π/2) was taken (every π/36). The following 

facts were checked. For a larger offset curve (for given b and s) the value eMax occurs for 

the angle t=40° / 45° (cf. Table 1). For a smaller offset curve (for given b and s) the value eMax 

occurs for the angle t=45°. For both offset curves (for given b and e) we can assume that 

the value sMax (≥3.5) occurs for t=45°. 
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Table 1: For given b and s the value eMax (such that for e∈[0, eMax] 
11QPd (e)≤0.01) was obtained for the angle t 

 b=8.5 b=9 b=9.5 b=10 b=10.5-11.5 b=12-14 b=14.5-19.5 b=20-23.5 

t=40° s∈[3.5, 6.5] s∈[3.5, 6] s∈[3.5, 5.5] s∈[3.5, 5] s∈[3.5, 4.5] s∈[3.5, 4] s=3.5 - 

t=45° s∈[7, 11] s∈[6.5, 11] s∈[6, 11] s∈[5.5, 11] s∈[5, 11] s∈[4.5, 11] s∈[4, 11] s∈[3.5, 11] 

 

4.2 Parameter eMax 

Test 2. The ellipse offset curves off(el(a, b); s) for parameter values s (s=3.5, 4, …, 16m), 

b=17m and 21 eba −=  were analyzed. The eccentricity e∈[0, 1) was taken (every 0.001). 

The angle t∈[0, π/2) was taken (every π/72). For each angle t and for each distance s such 

value emax was determined that for e∈[0, emax] 01.0)(
11

≤ed QP  ( 01.0)(
22

≤ed QP ).The results 

are shown in Figures 3 and 4. The selected calculations are given in Table 2 and Table 3. 

Test 2.A. The values eMax fulfilling the condition (A) were determined for the given values s. 
 

Table 2: Such eccentricity eMax that for e∈[0, eMax] 01.0)(
11

≤ed QP  (determined for t=π/4) 

The width of the lane s[m] 

s=3.5 s=4 s=5 s=6 s=7 s=8 s=9 s=10 s=11 s=12 s=13 s=14 s=15 s=16 

eMax=0.531
eMax=0.519 

aMax=19.88 
0.499 0.484 0.472 

eMax=0.462 

aMax=19.18
0.455 0.448 0.442 0.437 0.432 0.428 0.424 0.421 

 

For the given parameter values b, k, s, t it was checked that the value eMax (i.e. the 

smallest emax) (the semi-axis length aMax) occurs for the angle t=45° (only for s=3.5 emax= 

0,531124999999246 for t=40° and emax=0,531189999999246 for t=45°) (Figure 3). Hence, 

the approximation of the offset curve off(el(a, b); s) by the ellipse el1(a+s, b+s) will be 

satisfactory if we determine eMax (aMax) for t=45° and select e∈[0, eMax] (a∈[b, aMax]). 

Example 3. [RCI] We have b=17m, s=4m (2s=8m). We need to find a length a. 

We choose e∈[0, 0.462] (a∈[b, 19.18]) because 0.462=min{0.519, 0.462} (Table 2). 

Test 2.B. The values eMax fulfilling the condition (B) were determined for the given values s. 

For the given parameter values b, k, s, t it was checked that the value eMax (the semi-

axis length aMax) occurs for the angle t=π/4 (Figure 4). Hence, the approximation of the offset 

curve off(el(a, b); s) by the ellipse el2(a-s, b-s) will be satisfactory if we determine eMax (aMax) 

for t=π/4 and select e∈[0, eMax] (a∈[b, aMax]). Only offset curves (for which points P, P2 and 

Q2 belong to the same quadrant of the coordinate system) were included in the calculations. 

 

Figure 3: Such eccentricity emax that for e∈[0, emax] 01.0)(
11

≤ed QP  (the graph of the function emax=f(A)(t, s)) 

Figure 4: Such eccentricity emax that for e∈[0, emax] 01.0)(
22

≤ed QP  (the graph of the function emax=f(B)(t, s)) 
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Table 3: Such eccentricity eMax that for e∈[0, eMax] 01.0)(
22

≤ed QP  (determined for t=π/4) 

The width of the lane s[m] 

s=3.5 s=4 s=5 s=6 s=7 s=8 s=9 s=10 s=11 s=12 s=13 s=14 s=15 s=16 

eMax=0.488
eMax=0.47 

aMax=19.26 
0.44 0.414 0.391 0.371 0.351 0.332 0.314 0.295 0.275 0.252 0.226 0.19 

 

Example 4. [RAR] We have b=17m, s=4m. We need to find a length a. 

01.0)(
11

≤ed QP  for e∈[0, 0.519] (a∈[b, 19.88]) (cf. Table 2), 01.0)(
22

≤ed QP  for e∈[0, 

0.47] (a∈[b, 19.26]) (cf. Table 3). Hence e∈[0, 0.47] (a∈[17, 19.26]). 

4.3 Parameter sMax 

Test 3. The ellipse offset curves off(el(a, b); s) for parameter values s (s=3.5, 3.55, …, 

16.5m), b=17m and 21 eba −=  were analyzed. The eccentricity e∈[0, 1) was taken (every 

0.05). The angle t∈[0, π/2) was taken (every π/72). For each angle t and for each value e such 

width of the lane smax was determined that for s∈[0.5, smax] )(
11

sd QP ≤0.01 ( )(
22

sd QP ≤0.01). 

The results are shown in Figures 5 and 6. The selected calculations are given in Tables 4 and 5. 

Test 3.C. The values sMax fulfilling the condition (C) were determined for the values e∈[0, 1). 
 

For the given parameter values b, k, e, t it was checked that for e∈[0, 0.5] the values 

smax occur for the angle t=π/4 (Figure 5). For e∈[0.55, 1) and t=π/4 we have smax<3 so 

the calculations were done for t=π/4. The approximation of the offset curve off(el(a, b); s) by 

the ellipse el1(a+s,b+s) will be satisfactory if we determine sMax for t=π/4 and select s∈[0.5, 

sMax] (Table 4). 

Table 4: Such width sMax of the lane that for s∈[0.5, sMax] 01.0)(
11

≤sd QP  (determined for t=π/4) The [+] symbol 

means: for s∈[3.5, 16.5] 
11QPd (s)≤0.01, the [-] symbol means: 

11QPd (s)>0.01 for s∈[3.5, 16.5] 

The eccentricity e (the length of the semi-axis a[m]) 

e
=

0
 (

a
=

1
7

) 

0
.1

 (
1

7
.0

8
) 

0
.2

 (
1

7
.3

5
) 

0
.3

 (
1

7
.8

2
) 

0
.4

 (
1

8
.5

5
) 

0
.4

4
6

 (
1

9
) 

0
.4

5
 (

1
9

.0
4

) 

0
.4

9
 (

1
9

.5
) 

0
.5

 (
1

9
.6

3
) 

0
.5

2
7

 (
2

0
) 

0
.5

3
 (

2
0

.5
) 

0
.6

 (
2

1
.2

5
) 

0
.7

 (
2

3
.8

0
) 

0
.8

 (
2

8
.3

3
) 

0
.9

 (
3

9
) 

0
.9

9
 (

1
2

0
.5

) 

[+] [+] [+] [+] [+] sMax=10.18 9.66 5.59 4.95 3.67 3.54 [-] [-] [-] [-] [-] 

 

Example 5. [RCI] We have b=17m, s=3.5m (2s=7m). We need to choose a length a from: 

a=19m, a=19,5m, a=20m. 

Figure 5: Such width smax of the lane that for s∈[0.5, smax] 
11QPd (s)≤0.01 (the graph of the function smax=f(C)(t, e)) 

Figure 6: Such width smax of the lane that for s∈[0.5, smax] 
22QPd (s)≤0.01 (the graph of the function smax=f(D)(t, e)) 
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For a=19m sMax=10.18m, for a=19.5m sMax=5.59m, for a=20m sMax=3.67m (cf. Table 4). The 

approximation will be satisfactory if we choose a=19m because 2s=7m≤10.18m. 

Test 3.D. The values sMax fulfilling the condition (D) were determined for the values e∈[0, 1). 

For given parameter values b, k, e, t it was checked that the value sMax (the smallest 

smax) occurs for the angle t=π/4 (Figure 6). The approximation of the offset curve off(el(a, b); 

s) by the ellipse el2(a-s, b-s) will be satisfactory if we determine sMax for t=π/4 and select 

s∈[0.5, sMax]. 

Table 5: Such width of the lane sMax that for s∈[0.5, sMax] 01.0)(
22

≤sd QP  (determined for t=π/4) 

The eccentricity e (the length of the semi-axis a[m]) 

e=0 

(a=17) 

0.1 

(17.08) 

0.2 

(17.35) 

0.3 

(17.82) 

0.4 

(18.55) 

0.446 

(19) 

0.45 

(19.04) 

0.5 

(19.63) 

0.6 

(21.25) 

0.7 

(23.80) 

0.8 

(28.33) 

0.9 

(39) 

0.99 

(120.51) 

[+] [+] sMax=15.77 11.73 6.62 4.77 4.65 3.21 [-] [-] [-] [-] [-] 

5 Conclusions 

The possibility of approximating the offset curves off(el(a, b); s) by ellipses el1(a+s, b+s) and 

el2(a-s, b-s) for various values a, b, s was numerically analyzed. In section 4 we have checked 

for which parameter values b, s, e the approximation of the offset curve off(el(a, b); s) 

by ellipse el1 (el2) is satisfactory. The ellipses which can be used to shape the turbo 

roundabouts (approved in [9]) were considered in particular. In section 3 the useful formulas 

for coordinates of points P1, P2, Q1 and Q2 (for any point P, i.e. for any angle t) were 

determined. 

It was checked that we can get a greater flattening of a small elliptical two-lane turbo-

roundabout (approved in [9]) when we begin to delineate it from the axis of the road. 

The recommended (in [9]) width of the road on two-lane circular roundabout in 

the built-up area is 9.1-10m. The article contains a wider calculation for two reasons. 

The legal act (Journal of Laws No. 43) in force in Poland is not very precise in the field of 

the  roundabouts designing and a designer can interpret it widely. “The guidelines” make it 

more precise, but they are not legally binding (cf. [10]). Secondly, the offset curves of 

the circle are circles and the ellipse offset curves are not ellipses. 
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APROKSYMACJA KRZYWYCH OFFSETOWYCH ELIPSY 

W PROJEKTOWANIU ROND TURBINOWYCH 

Eliptyczne ronda turbinowe są bardziej bezpieczną i efektywniejszą alternatywą dla 

standardowych rond wielopasmowych. W pracy przedstawiono wyniki analizy numerycznej 

dla problemu aproksymacji krzywych offsetowych off(el(a, b); s) danej elipsy el(a, b) 

o odległości s przez elipsę el(a-s, b-s) oraz el(a+s, b+s). Rozważamy elipsy, które mogą 

posłużyć do kształtowania rond turbinowych. Przetestowano, dla których wartości parametrów 

s (szerokość pasa ruchu) i e (mimośród) maksymalne odchylenie krzywej offsetowej elipsy od 

elipsy el1 (el2) nie przekracza dokładności tyczenia krzywych w terenie. 

 


