TJI BUULETYM OF POLISH SOCIETY

 FOR GEOMETRY AND ENGINEERING GRAPHICS

POLSKIEGO TOWARZYSTWA GEOMETRII I GRAFIKI INŻYNIERSKIEJ

THE JOURNAL OF POLISH SOCIETY FOR GEOMETRY AND ENGINEERING GRAPHICS

VOLUME 31

Editorial Board

International Scientific Committee
Anna BŁACH, Ted BRANOFF (USA), Modris DOBELIS (Latvia), Bogusław JANUSZEWSKI, Natalia KAYGORODTSEVA (Russia), Cornelie LEOPOLD (Germany), Vsevolod Y. MIKHAILENKO (Ukraine), Jarosław MIRSKI, Vidmantas NENORTA (Lithuania), Pavel PECH (Czech Republic), Stefan PRZEWŁOCKI, Leonid SHABEKA (Belarus), Daniela VELICHOVÁ (Slovakia), Krzysztof WITCZYŃSKI

Editor-in-Chief
Edwin KOŹNIEWSKI
Associate Editors

Renata GÓRSKA, Maciej PIEKARSKI, Krzysztof T. TYTKOWSKI
Secretary
Monika SROKA-BIZON
Executive Editors
Danuta BOMBIK (vol. 1-18), Krzysztof T. TYTKOWSKI (vol. 19-31)
English Language Editor
Barbara SKARKA

> | Marian PALEJ - PTGiGI founder, initiator and the |
| :--- |
| Editor-in-Chief of BIULETYN between 1996-2001 |

All the papers in this journal have been reviewed

Editorial office address:
44-100 Gliwice, ul. Krzywoustego 7, POLAND
phone: (+48 32) 2372658

Bank account of PTGiGI : Lukas Bank 94194010763058179900000000

ISSN 1644-9363

Publication date: December 2018 Circulation: 100 issues.
Retail price: 15 PLN (4 EU)

CONTENTS

PART I: THEORY (TEORIA)

1 A. Borowska: APPROXIMATION OF THE SPHEROID OFFSET SURFACE AND THE TORUS OFFSET SURFACE

PART II: GRAPHICS EDUCATION (DYDAKTYKA)

1 K. Banaszak: CONIC SECTIONS IN AXONOMETRIC PROJECTION 11
2 B. Kotarska-Lewandowska: BETWEEN DESCRIPTIVE GEOMETRY AND CAD 3D 15
3 C. Lapińska, A. Ogorzałek: CHARACTERISTIC POINTS OF CONICS IN THE NET-LIKE METHOD OF CONSTRUCTION
4 O. Nikitenko, I. Kernytskyy, A. Kalinin, V. Dumanskaja: DESCRIPTIVE GEOMETRY COURSE ADDRESED TO THE CIVIL ENGINEERING STUDENTS AT ODESSA STATE ACADEMY 29
5 F. N. Pritykin, N. V. Kaygorodtseva, M. N. Odinets, I.V. Krysova: ROBOTICS AS MOTIVATION OF LEARNING TO GEOMETRY AND GRAPHICS 35

PART III: APPLICATIONS (ZASTOSOWANIA)

1 A. Borowska: APPROXIMATION OF THE ELLIPSE OFFSET CURVES IN TURBO ROUNDABOUTS DESIGN 43
2 A. Borowska: APPROXIMATION OF THE OFFSET CURVES IN THE FORMATION OF TURBO ROUNDABOUTS 53
3 O. Nikitenko, I. Kernytskyy: GEOMETRIC MODELLING OF CONJUGATE RULED SURFACES WITH USING THE KINEMATIC SCREW DIAGRAM 61
4 K. Panchuk, E. Lyubchinov SPATIAL CYCLOGRAPHIC MODELING ON NAUMOVICH HYPERDRAWING 69
PART IV: HISTORY OF DESCRIPTIVE GEOMETRY (HISTORIA GEOMETRII WYKREŚLNEJ)
1 . E. Koźniewski: WYBRANE KONSTRUKCJE GEOMETRYCZNE W SŁOWNIKU WYRAZÓWTECHNICZNYCH TYCZĄCYCH SIĘ BUDOWNICTWA TEOFILA ŻEBRAWSKIEGO 79
PART V: INFORMATION AND NEWS (WYDARZENIA I INFORMACJE)
1 REVIEWERS 201814

APPROXIMATION OF THE ELLIPSE OFFSET CURVES IN TURBO ROUNDABOUTS DESIGN

Anna BOROWSKA
Bialystok University of Technology, Faculty of Computer Science ul. Wiejska 45A, 15-351 Bialystok
e-mail: a.borowska@pb.edu.pl

Abstract

The elliptical turbo roundabouts are a safer and more effective alternative to the known multi-lane roundabouts. This paper contains the results of numerical analysis for the problem of approximation of the offset curves $\operatorname{off}(e l(a, b) ; s)$ of an ellipse $e l(a, b)$ at distance s by ellipses $e l_{1}(a+s, b+s)$ and $e l_{2}(a-s, b-s)$. We considered the ellipses which can be used to shape the turbo roundabouts. It was tested for which parameter values s (the width of the lane) and e (eccentricity) the maximum deviation of the ellipse offset curve from the ellipse $e l_{1}\left(e l_{2}\right)$ does not exceed the accuracy of the delineating the curves in the terrain.

Keywords: ellipse offset curve, accuracy of delineating, turbo roundabout

1 Introduction

In this paper the studies from [1] and [2] are continued. The article contains mathematical facts helpful in designing elliptical turbo roundabouts. The possibility of approximating offset curves off $(e l(a, b) ; s)$ (of an ellipse $e l(a, b)$ at distance s) by ellipses $e l_{1}(a+s, b+s)$ and $e l_{2}(a-s$, $b-s$) (for any values a, b, s) was numerically analyzed. The ellipses which can be used to shape the turbo roundabouts were considered in particular. It was tested for which parameter values $s, e\left(e=\sqrt{1-(b / a)^{2}}\right)$ the maximum deviation of the ellipse offset curve from the ellipse $e l_{1}\left(e l_{2}\right)$ does not exceed the accuracy of the delineating the curves in the terrain.
Let us assume that P is any point on the ellipse $e l$ and l is the normal line to $e l$ at the point P. Points P_{1} and P_{2} lie on the normal l at distance s from $P . Q_{1}, Q_{2}$ are the intersection points of the normal line l with ellipses $e l_{1}$ and $e l_{2}$ respectively. In section 3 useful formulas for coordinates of points P_{1}, P_{2}, Q_{1} and Q_{2} (for any point P, i.e. for any angle t) were determined.

2 Elliptical turbo roundabouts

The ellipse offset curves are used, among other things, in the designing of two-lane turbo-

Figure 1: The typical turbo roundabout

Figure 2: The ellipse offset curves
roundabouts. The turbo roundabout was invented in the Netherlands in 1996 as a safer and more efficient alternative to the standard multi-lane roundabouts (cf. [7]). The vehicle entering the interior lane of such roundabout, after crossing the axis is automatically (without any collision) located in the outer lane (cf. [2]). The tracks of the vehicles do not intersect at the turbo roundabouts and giving right of way only occurs when the vehicle enters the roundabout. The shape of the central island (which we are analyzing) consists of two halves of an ellipse shifted by the width of the lane. The turbo roundabouts with the elliptical central island are especially recommended when one traffic direction is dominant in terms of the intensity (cf. [2]). The larger difference in the strength of the intensity of two traffic directions, the more flattened an ellipse should be used. The ellipse graph (shaping the central island) should be in the circle ring determined by the minimum and maximum radius of the circle allowed by the guidelines [9] for the central island of the given roundabout type (cf. [2]). The precision of the delineating of the curves in the terrain (by using modern electronic theodolites) is $\pm 1 \mathrm{~cm}$.

3 Mathematical formulas

Let $c(t)=(x(t), y(t))(t \in[\alpha, \beta])$ be a parametric representation of a planar curve (we write down functions $x(t), y(\mathrm{t})$ as $\left.x_{t}, y_{t}\right)$. The normal vector to the curve $c(t)$ at the point $P\left(x_{t}, y_{t}\right)$ is of the form $\mathrm{n}=\left[-y_{t}^{\prime}, x_{t}^{\prime}\right]$. The unit normal vector at the point $P\left(x_{t}, y_{t}\right)$ is as follows (cf. [8] p.335, [3])

$$
\begin{equation*}
\mathrm{n}_{\mathrm{ver}}=\frac{\left[-y_{t}^{\prime}, x_{t}^{\prime}\right]}{\sqrt{\left(x_{t}^{\prime}\right)^{2}+\left(y_{t}^{\prime}\right)^{2}}} . \tag{1}
\end{equation*}
$$

Lemma 1 (cf. [4]):

$$
\begin{gather*}
\arccos (x)+\arcsin (x)=\pi / 2 \text { for } \mathrm{x} \in[-1,1] \tag{2}\\
\text { If } x+y>0 \text { then } \arccos (x)+\arccos (y)=\arccos \left(x y-\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}\right) . \tag{3}
\end{gather*}
$$

Lemma 2: If $\arccos (x)=\arcsin (y)$ and $x+y>0$ then $x^{2}+y^{2}=1$.
Justification. Let $\arccos (x)=\arcsin (y)$. From (2) and (3) we obtain $\arccos (x)+\arccos (y)=\pi / 2$ $\Rightarrow \quad \arccos \left(x y-\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}\right)=\arccos (0) \Rightarrow x y=\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)} \Rightarrow x^{2}+y^{2}=1$.

For a smooth planar curve c, we define an offset curve c_{d} at distance d in the following way. On each curve normal, we mark the two points that are at distance d from the curve c. The set of all of these points forms the offset $c_{d}=\left(c_{d}^{\prime} \cup c_{d}^{\prime \prime}\right)$ (cf. [8] p. 335, [5]). The offset $c_{d}(t)$ at distance d to $c(t)$ is obtained as (cf. [8] p. 335) $c_{d}(t)=c(t) \pm d \mathrm{n}_{\mathrm{ver}}(t)$.

The curve c and its offset curves c_{d}^{\prime} and $c_{d}^{\prime \prime}$ are not always of the same type. The offset c_{d} of an ellipse c is not a pair of ellipses. We can show this fact by drawing three concentric ellipses $e l(a, b), e l_{1}(a+s, b+s), e l_{2}(a-s, b-s)$ and the normal l to the ellipse $e l$ at any point P (see Figure 2). The interesting offset surfaces (offset curves) are described in [5] and [6].

Let points P_{1} and P_{2} lie on the normal l at distance s from $P . Q_{1}, Q_{2}$ are the intersection points of the normal line l with ellipses $e l_{1}$ and $e l_{2}$ respectively. Non-zero distances $d_{P_{1} Q_{1}}=\left|\overline{P_{1} Q_{1}}\right|$ and $d_{P_{2} Q_{2}}=\left|\overline{P_{2} Q_{2}}\right|$ mean that ellipses $e l_{1}$ and $e l_{2}$ do not keep a constant distance s regarding the basic ellipse $e l$ at points not lying on the axes of the coordinate system.

3.1 The coordinates of points $\boldsymbol{P}_{\mathbf{1}}$ and $\boldsymbol{P}_{\mathbf{2}}$

The coordinates of points P_{1} and P_{2} lying on the normal l to the ellipse $e(t)$ (at the point $P\left(x_{t}\right.$, $\left.y_{t}\right)$) and distant from P by the length s were determined using the equation of offset curves.
Let us take the parametric equations of the ellipse $e(t): x=a \cos (t), y=b \sin (t), t \in[0,2 \pi]$.
The unit normal vector to $e(t)$ at the point $P\left(x_{t}, y_{t}\right)$ is of the form

$$
\mathrm{n}_{\mathrm{ver}}=\frac{[-b \cos (t),-a \sin (t)]}{\sqrt{b^{2} \cos ^{2}(t)+a^{2} \sin ^{2}(t)}}=\frac{\left[-b^{2} x_{t},-a^{2} y_{t}\right]}{\sqrt{b^{4} x_{t}^{2}+a^{4} y_{t}^{2}}} \text { for }\left\{\begin{array}{l}
x_{t}=a \cos (t) \tag{4}\\
y_{t}=b \sin (t)
\end{array}\right. \text {. }
$$

The equation of the offset curves off $(e(t) ; s)$ is as follows

$$
\text { off }(e(t) ; s):[X, Y]=\left[x_{t}, y_{t}\right] \pm \frac{s\left[-b^{2} x_{t},-a^{2} y_{t}\right]}{\sqrt{b^{4} x_{t}^{2}+a^{4} y_{t}^{2}}} \text { for }\left\{\begin{array}{l}
x_{t}=a \cos (t) \tag{5}\\
y_{t}=b \sin (t)
\end{array} \quad t \in[0,2 \pi] .\right.
$$

Finally we obtain coordinates of points P_{1} and P_{2} lying on l and distant from P by the length s.

$$
\left\{\begin{array}{l}
x_{P_{1}}=x_{t}+\frac{s b^{2} x_{t}}{\sqrt{b^{4} x_{t}^{2}+a^{4} y_{t}^{2}}}=x_{t}+\frac{s}{\sqrt{1+v}} \tag{6}\\
y_{P_{1}}=y_{t}+\frac{s a^{2} y_{t}}{\sqrt{b^{4} x_{t}^{2}+a^{4} y_{t}^{2}}}=y_{t}+s \sqrt{\frac{v}{1+v}}
\end{array},\left\{\begin{array}{l}
x_{P_{2}}=x_{t}-\frac{s}{\sqrt{1+v}} \\
y_{P_{2}}=y_{t}-s \sqrt{\frac{v}{1+v}}, v=((a / b) \tan (t))^{2} .
\end{array}\right.\right.
$$

3.2 The coordinates of the point Q_{1}

The coordinates of the point Q_{1} (the intersection of the normal line l to the ellipse $e(t)$ at the point $P\left(x_{t}, y_{t}\right)$ with the ellipse $e l_{1}(a+s, b+s)$) were determined as follows. Let us write down the parametric equations of the normal line l to the ellipse $e(t)$ at the point P. Points P and P_{1} lie on the normal line l. Hence

$$
\begin{equation*}
x=x_{t}+\frac{h s}{\sqrt{1+v}}, y=y_{t}+\frac{h s \sqrt{v}}{\sqrt{1+v}}, \text { where } x_{t}=a \cos (t), y_{t}=b \sin (t), t \in[0, \pi / 2) . \tag{7}
\end{equation*}
$$

Let us set the parameter h giving the intersection points of the line l with ellipse $e l_{1}(a+s, b+s)$.

$$
\begin{align*}
x=x_{t}+\frac{h s}{\sqrt{1+v}}=(a+s) \cos (\varphi), y=y_{t}+\frac{h s \sqrt{v}}{\sqrt{1+v}}=(b+s) \sin (\varphi) . \text { From here } \\
\varphi=\arccos \left(\left(x_{t}+\frac{h s}{\sqrt{1+v}}\right) /(a+s)\right), \varphi=\arcsin \left(\left(y_{t}+\frac{h s \sqrt{v}}{\sqrt{1+v}}\right) /(b+s)\right) . \tag{8}
\end{align*}
$$

Hence and from lemma 2: $\left(\left(x_{t}+\frac{h s}{\sqrt{1+v}}\right) /(a+s)\right)^{2}+\left(\left(y_{t}+\frac{h s \sqrt{v}}{\sqrt{1+v}}\right) /(b+s)\right)^{2}=1$. Hence

$$
\begin{equation*}
A h^{2}+B h+C=0, \text { where } A=\frac{s^{2}}{1+v}\left((b+s)^{2}+(a+s)^{2} v\right) \tag{9}
\end{equation*}
$$

$$
\begin{gather*}
B=\frac{2 s}{\sqrt{1+v}}\left((a+s)^{2} y_{t} \sqrt{v}+(b+s)^{2} x_{t}\right), C=\left((a+s) y_{t}\right)^{2}+\left((b+s) x_{t}\right)^{2}-((a+s)(b+s))^{2} \tag{10}\\
\Delta=\frac{4 s^{2}}{1+v}(a+s)^{2}(b+s)^{2}\left((a+s)^{2} v+(b+s)^{2}-\left(x_{t} \sqrt{v}-y_{t}\right)^{2}\right) . \tag{11}
\end{gather*}
$$

$\Delta>0, h_{1}=(-B+\sqrt{\Delta}) / 2 A$ (the parameter for the point $\left.Q_{1}\right), h_{2}=(-B-\sqrt{\Delta}) / 2 A$.
The coordinates of the point $P_{k 1}$ lying on the normal line l and distant from P by the length $s-k$

$$
\begin{equation*}
x_{P_{k 1}}=x_{t}+\frac{s-k}{\sqrt{1+v}}, y_{P_{k 1}}=y_{t}+\frac{(s-k) \sqrt{v}}{\sqrt{1+v}} \text { (cf. (3)). } \tag{13}
\end{equation*}
$$

Lemma 3: (a) The coordinates of the points $P, P_{k 1}, P_{1}$ and Q_{1} can be determined using the parametric equations (7) of the normal line l to the ellipse $e l(a, b)$ at the point $P\left(x_{t}, y_{t}\right)$ for the parameter h equal respectively $h=0, h=(s-k) / s, h=1$ and $h=h_{1}$ (cf. (12)).
(b) $d_{P_{1} Q_{1}} \leq k$ iff $h_{1} \geq(s-k) / s$.

Justification (b). The property results from the fact that points $P_{k 1}, P_{1}$ and Q_{1} lie on the normal l.
Example $1 \mathrm{a}=25, \mathrm{~b}=17, \mathrm{~s}=3.5, \mathrm{k}=0.01, \mathrm{t}=35$

$\mathrm{h}=0$,	$\mathrm{x}_{\mathrm{t}}=20.4788011072248$	$\mathrm{y}_{\mathrm{t}}=9.75079941796778$
$\mathrm{~h}=(\mathrm{s}-\mathrm{k}) / \mathrm{s}=0.997142857142857$,	$\mathrm{xP}_{\mathrm{k} 1}=22.9102122371578$	$\mathrm{yP}_{\mathrm{k} 1}=12.2544647145356$
$\mathrm{~h}=1$,	$\mathrm{xP}_{1}=22.9171790312264$	$\mathrm{yP}_{1}=12.2616385406002$
$\mathrm{~h}=\mathrm{h}_{1}=0.98465895377262$,	$\mathrm{xQ}_{1}=22.8797717627745$	$\mathrm{yQ}_{1}=12.2231196415504$

3.3 The coordinates of the point $Q_{\mathbf{2}}$

The coordinates of the point Q_{2} (the intersection of the normal line l to the ellipse $e(t)$ at the point $P\left(x_{t}, y_{t}\right)$ with the ellipse $\left.e l_{2}(a-s, b-s)\right)$ were determined as follows. Let us write down the parametric equations of the normal line l to the ellipse $e(t)$ at the point P. Points P and P_{2} lie on the normal line l. Hence

$$
\begin{equation*}
x=x_{t}-\frac{h s}{\sqrt{1+v}}, y=y_{t}-\frac{h s \sqrt{v}}{\sqrt{1+v}}, \text { where } x_{t}=a \cos (t), y_{t}=b \sin (t), t \in[0, \pi / 2) \tag{14}
\end{equation*}
$$

Let us set the parameter h giving the intersection points of the line l with ellipse $e l_{2}(a-s, b-s)$.

$$
\begin{equation*}
x=x_{t}-\frac{h s}{\sqrt{1+v}}=(a-s) \cos (\varphi), y=y_{t}-\frac{h s \sqrt{v}}{\sqrt{1+v}}=(b-s) \sin (\varphi) . \tag{15}
\end{equation*}
$$

By conducting analogous calculations as in 3.2 we get the equation

$$
\begin{gather*}
A h^{2}+B h+C=0, \text { where } A=\frac{s^{2}}{1+v}\left((b-s)^{2}+(a-s)^{2} v\right) \tag{16}\\
B=\frac{-2 s}{\sqrt{1+v}}\left((a-s)^{2} y_{t} \sqrt{v}+(b-s)^{2} x_{t}\right), C=\left((a-s) y_{t}\right)^{2}+\left((b-s) x_{t}\right)^{2}-((a-s)(b-s))^{2}(1 \\
\Delta=\frac{4 s^{2}}{1+v}(a-s)^{2}(b-s)^{2}\left((a-s)^{2} v+(b-s)^{2}-\left(x_{t} \sqrt{v}-y_{t}\right)^{2}\right) . \tag{18}
\end{gather*}
$$

For $\Delta>0, h_{1}=(-B+\sqrt{\Delta}) / 2 A, h_{2}=(-B-\sqrt{\Delta}) / 2 A$ (the parameter for the point $\left.Q_{2}\right) .(19)$
Lemma 4: (a) The coordinates of the points $P, P_{k 2}, P_{2}$ and Q_{2} can be determined using the parametric equations (14) of the normal line l to the ellipse $e l(a, b)$ at the point $P\left(x_{t}, y_{t}\right)$ for the parameter h equal respectively $h=0, h=(s-k) / s, h=1$ and $h=h_{2}$ (cf. (19)).
(b) $d_{P_{2} Q_{2}} \leq k$ iff $h_{2} \geq(s-k) / s$ (cf. (19)).

Justification (b). The property results from the fact that points P_{2} and Q_{2} lie on the normal l.
Example $2 \mathrm{a}=25, \mathrm{~b}=17, \mathrm{~s}=3.5, \mathrm{k}=0.01, \mathrm{t}=65$
$\mathrm{h}=0$,
$\mathrm{h}=(\mathrm{s}-\mathrm{k}) / \mathrm{s}=0.997142857142857$

$$
x_{t}=10.5654565435175
$$

$\mathrm{xP}_{\mathrm{k} 2}=9.51057699269641$
$\mathrm{xP}_{2}=9.50755441518689$
$\mathrm{xQ}_{2}=9.51833925489295$
$\mathrm{h}=\mathrm{h}_{2}=0.989805472012358$
$\mathrm{y}_{\mathrm{t}}=15.407232379623$
$\mathrm{yP}_{\mathrm{k} 2}=12.0804728251527$
$\mathrm{yP}_{2}=12.070940562819$
$\mathrm{yQ}_{2}=12.1049525677987$
$\mathrm{dP}_{2} \mathrm{Q}_{2}=0.0356809367902093$

4 Parameter analysis for the ellipse offset curves

Fact 1. We shall say that the approximation of the ellipse offset curve off $(e l(a, b) ; s)$ by the ellipse $e l_{1}\left(e l_{2}\right)$ is satisfactory, if for any point P of the ellipse $e l$ there is $d_{P_{1} Q_{1}} \leq k$ $\left(d_{P_{2} Q_{2}} \leq k\right)$ for $k=0.01$, i.e. when the deviation $d_{P_{1} Q_{1}}\left(d_{P_{2} Q_{2}}\right)$ does not exceed the accuracy of the delineating the curves in the terrain.

Section 4 contains the results of numerical analysis for the problem of approximation of the offset curves off $(e l(a, b) ; s)$ by ellipses $e l_{1}$ and $e l_{2}$. In order to check if the approximation of the given offset curve off $(e l(a, b)$; $s)$ by the ellipse $e l_{1}\left(e l_{2}\right)$ is satisfactory, we have to solve one of the following problems.
Problem 1. We have the semi-minor axis b, the width of the lane s and $k=0.01$. For the ellipse offset curve $\operatorname{off}(e l(a, b) ; s)$ we need to find
(A) such eccentricity $e_{M a x}$ that for $e \in\left[0, e_{M a x}\right]$ and any point P of the ellipse el $d_{P_{1} Q_{1}}(e) \leq 0.01$.
(B) such eccentricity $e_{M a x}$ that for $e \in\left[0, e_{M a x}\right]$ and any point P of the ellipse el $d_{P_{2} Q_{2}}(e) \leq 0.01$.

Problem 2. We have the semi-minor axis b, eccentricity e and $k=0.01$. For the ellipse offset curve off(el($a, b) ; s)$ we need to find
(C) such a distance $s_{M a x}$ that for $s \in\left[0.5, s_{M a x}\right]$ and any point P of the ellipse el $d_{P_{1} Q_{1}}(s) \leq 0.01$.
(D) such a distance $s_{M a x}$ that for $s \in\left[0.5, s_{M a x}\right]$ and any point P of the ellipse el $d_{P_{2} Q_{2}}(s) \leq 0.01$.

The problem 1 was resolved in the following way. For established values b, s and consecutive angles $t \in[0, \pi / 2)$ we have determined the largest possible values of the eccentricity $e_{\max }$ such that the deviation $d_{P_{1} Q_{1}} \leq k \quad\left(d_{P_{2} Q_{2}} \leq k\right)$. Next, from among the determined values $e_{\max }$ we selected the smallest one (the value $e_{M a x}$. If (for given b and s) we choose $e \in\left[0, e_{M a x}\right]\left(a \in\left[b, a_{M a x}\right]\right)$ then the approximation of the offset curve off $(e l(a, b) ; s)$ by the ellipse $e l_{1}\left(e l_{2}\right)$ will be satisfactory. It turned out that for the ellipse offset curves (which can be used to shape the turbo roundabouts) the values $e_{\text {Max }}$ occur for a specific angle t. The problem 2 was resolved similarly.

We introduce abbreviations: [RAR] - We start delineating the roundabout from the axis of the road. $[\mathrm{RCI}]-$ We start delineating the roundabout from the edge of the central island.

4.1 Parameter t

Test 1. The ellipse offset curves which can be used to shape the roundabouts (approved in [9]) were considered. In the case of a larger offset curve, the calculations were made for $b=8.5,9$, $\ldots, 23.5 \mathrm{~m}$ (i.e. each possible central island size (approved in [9]) was considered). In the case of a smaller offset curve, the calculations were made for $b=16,16.5, \ldots, 32.5 \mathrm{~m}$ (for each possible ellipse representing the road axis (or outer line) of the roundabout (approved in [9])). The width of the lane s was tested from 3.5 m to 11 m (every 0.5 m). The eccentricity e was taken from 0 to 0.95 (every 0.05). The angle $t \in[0, \pi / 2$) was taken (every $\pi / 36$). The following facts were checked. For a larger offset curve (for given b and s) the value $e_{\text {Max }}$ occurs for the angle $t=40^{\circ} / 45^{\circ}$ (cf. Table 1). For a smaller offset curve (for given b and s) the value $e_{\text {Max }}$ occurs for the angle $t=45^{\circ}$. For both offset curves (for given b and e) we can assume that the value $s_{\text {Max }}(\geq 3.5)$ occurs for $t=45^{\circ}$.

Table 1: For given b and s the value $e_{\text {Max }}$ (such that for $\left.e \in\left[0, e_{M a x}\right] d_{P_{1} Q_{1}}(e) \leq 0.01\right)$ was obtained for the angle t

	$b=8.5$	$b=9$	$b=9.5$	$b=10$	$b=10.5-11.5$	$b=12-14$	$b=14.5-19.5$	$b=20-23.5$
$t=40^{\circ}$	$s \in[3.5,6.5]$	$s \in[3.5,6]$	$s \in[3.5,5.5]$	$s \in[3.5,5]$	$s \in[3.5,4.5]$	$s \in[3.5,4]$	$s=3.5$	-
$t=45^{\circ}$	$s \in[7,11]$	$s \in[6.5,11]$	$s \in[6,11]$	$s \in[5.5,11]$	$s \in[5,11]$	$s \in[4.5,11]$	$s \in[4,11]$	$s \in[3.5,11]$

4.2 Parameter $\boldsymbol{e}_{\text {Max }}$

Test 2. The ellipse offset curves $\operatorname{off}(e l(a, b) ; s)$ for parameter values $s(s=3.5,4, \ldots, 16 \mathrm{~m})$, $b=17 \mathrm{~m}$ and $a=b / \sqrt{1-e^{2}}$ were analyzed. The eccentricity $e \in[0,1$) was taken (every 0.001).

Figure 3: Such eccentricity $e_{\max }$ that for $e \in\left[0, e_{\max }\right] d_{P_{1} Q_{1}}(e) \leq 0.01$ (the graph of the function $e_{\max }=f_{(\mathrm{A})}(t, s)$)
Figure 4: Such eccentricity $e_{\max }$ that for $e \in\left[0, e_{\max }\right] d_{P_{2} Q_{2}}(e) \leq 0.01$ (the graph of the function $e_{\max }=f_{(\mathrm{B})}(t, s)$)
The angle $t \in[0, \pi / 2$) was taken (every $\pi / 72$). For each angle t and for each distance s such value $e_{\max }$ was determined that for $e \in\left[0, e_{\max }\right] d_{P_{1} Q_{1}}(e) \leq 0.01\left(d_{P_{2} Q_{2}}(e) \leq 0.01\right)$. The results are shown in Figures 3 and 4. The selected calculations are given in Table 2 and Table 3.
Test 2.A. The values $e_{\text {Max }}$ fulfilling the condition (A) were determined for the given values s.

Table 2: Such eccentricity $e_{M a x}$ that for $e \in\left[0, e_{M a x}\right] d_{P_{1} Q_{1}}(e) \leq 0.01$ (determined for $t=\pi / 4$)

The width of the lane $s[\mathrm{~m}]$													
$s=3.5$	$s=4$	$s=5$	$s=6$	$s=7$	$s=8$	$s=9$	$s=10$	$s=11$	$s=12$	$s=13$	$s=14$	$s=15$	$s=16$
$e_{M a x}=0.531$	$\begin{aligned} & a_{x}=0.519 \\ & a_{x}=19.88 \end{aligned}$	0.499	0.484	0.472	$\begin{aligned} & e_{M a x}=0.462 \\ & a_{M a x}=19.18 \end{aligned}$	0.455	0.448	0.442	0.437	0.432	0.428	0.424	0.421

For the given parameter values b, k, s, t it was checked that the value $e_{\text {Max }}$ (i.e. the smallest $e_{\max }$) (the semi-axis length $a_{M a x}$) occurs for the angle $t=45^{\circ}$ (only for $s=3.5 e_{\max }=$ 0,531124999999246 for $t=40^{\circ}$ and $e_{\max }=0,531189999999246$ for $t=45^{\circ}$) (Figure 3). Hence, the approximation of the offset curve $\operatorname{off}(e l(a, b) ; s)$ by the ellipse $e l_{1}(a+s, b+s)$ will be satisfactory if we determine $e_{\text {Max }}\left(a_{M a x}\right)$ for $t=45^{\circ}$ and select $e \in\left[0, e_{M a x}\right]\left(a \in\left[b, a_{M a x}\right]\right)$.
Example 3. [RCI] We have $b=17 \mathrm{~m}, s=4 \mathrm{~m}(2 s=8 \mathrm{~m})$. We need to find a length a.
We choose $e \in[0,0.462]$ ($a \in[b, 19.18]$) because $0.462=\min \{0.519,0.462\}$ (Table 2).
Test 2.B. The values $e_{\text {Max }}$ fulfilling the condition (B) were determined for the given values s.
For the given parameter values b, k, s, t it was checked that the value $e_{\text {Max }}$ (the semiaxis length $a_{M a x}$) occurs for the angle $t=\pi / 4$ (Figure 4). Hence, the approximation of the offset curve $\operatorname{off}(e l(a, b) ; s)$ by the ellipse $e l_{2}(a-s, b-s)$ will be satisfactory if we determine $e_{M a x}\left(a_{M a x}\right)$ for $t=\pi / 4$ and select $e \in\left[0, e_{M a x}\right]\left(a \in\left[b, a_{M a x}\right]\right)$. Only offset curves (for which points P, P_{2} and Q_{2} belong to the same quadrant of the coordinate system) were included in the calculations.

Table 3: Such eccentricity $e_{M a x}$ that for $e \in\left[0, e_{M a x}\right] d_{P_{2} Q_{2}}(e) \leq 0.01$ (determined for $t=\pi / 4$)

The width of the lane $s[\mathrm{~m}]$													
$s=3.5$	$s=4$	$s=5$	$s=6$	$s=7$	$s=8$	$s=9$	$s=10$	$s=11$	$s=12$	$s=13$	$s=14$	$s=15$	$s=16$
$e_{\text {Max }}=0.488$	$e_{\text {Max }}=0.47$ $a_{\text {Max }}=19.26$	0.44	0.414	0.391	0.371	0.351	0.332	0.314	0.295	0.275	0.252	0.226	0.19

Example 4. [RAR] We have $b=17 \mathrm{~m}, s=4 \mathrm{~m}$. We need to find a length a.
$d_{P_{1} Q_{1}}(e) \leq 0.01$ for $e \in[0,0.519](a \in[b, 19.88])$ (cf. Table 2), $d_{P_{2} Q_{2}}(e) \leq 0.01$ for $e \in[0$, $0.47](a \in[b, 19.26])(c f$. Table 3). Hence $e \in[0,0.47]$ ($a \in[17,19.26]$).

4.3 Parameter $s_{\text {Max }}$

Test 3. The ellipse offset curves $\operatorname{off}(e l(a, b) ; s)$ for parameter values $s(s=3.5,3.55, \ldots$, 16.5 m), $b=17 \mathrm{~m}$ and $a=b / \sqrt{1-e^{2}}$ were analyzed. The eccentricity $e \in[0,1$) was taken (every 0.05). The angle $t \in[0, \pi / 2$) was taken (every $\pi / 72$). For each angle t and for each value e such width of the lane $s_{\max }$ was determined that for $s \in\left[0.5, s_{\max }\right] d_{P_{1} Q_{1}}(s) \leq 0.01\left(d_{P_{2} Q_{2}}(s) \leq 0.01\right)$. The results are shown in Figures 5 and 6. The selected calculations are given in Tables 4 and 5. Test 3.C. The values $s_{\text {Max }}$ fulfilling the condition (C) were determined for the values $e \in[0,1)$.

Figure 5: Such width $s_{\max }$ of the lane that for $s \in\left[0.5, s_{\max }\right] d_{P_{1} Q_{1}}(s) \leq 0.01$ (the graph of the function $s_{\max }=f_{(\mathrm{C})}(t, e)$) Figure 6: Such width $s_{\max }$ of the lane that for $s \in\left[0.5, s_{\max }\right] d_{P_{2} Q_{2}}(s) \leq 0.01$ (the graph of the function $s_{\max }=f_{(\mathrm{D})}(t, e)$)

For the given parameter values b, k, e, t it was checked that for $e \in[0,0.5]$ the values $s_{\max }$ occur for the angle $t=\pi / 4$ (Figure 5). For $e \in\left[0.55,1\right.$) and $t=\pi / 4$ we have $s_{\max }<3$ so the calculations were done for $t=\pi / 4$. The approximation of the offset curve off $\operatorname{ol}(a, b) ; s)$ by the ellipse $e l_{1}(a+s, b+s)$ will be satisfactory if we determine $s_{M a x}$ for $t=\pi d 4$ and select $s \in[0.5$, $s_{M a x}$ (Table 4).

Table 4: Such width $s_{M a x}$ of the lane that for $s \in\left[0.5, s_{M a x}\right] d_{P_{1} Q_{1}}(s) \leq 0.01$ (determined for $t=\pi / 4$) The [+] symbol means: for $s \in[3.5,16.5] d_{P_{1} Q_{1}}(s) \leq 0.01$, the [-] symbol means: $d_{P_{1} Q_{1}}(s)>0.01$ for $s \in[3.5,16.5]$

The eccentricity e (the length of the semi-axis $a[\mathrm{~m}]$)															
$\begin{aligned} & \text { E} \\ & \frac{\text { II }}{0} \\ & \text { II } \end{aligned}$	$\begin{aligned} & \overparen{\infty} \\ & \stackrel{O}{-} \\ & - \\ & - \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{n} \\ & \stackrel{y}{c} \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \stackrel{\infty}{-} \\ & \underset{0}{5} \end{aligned}$	$\begin{aligned} & \stackrel{\pi}{n} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{0} \end{aligned}$		\overparen{O} 	$\begin{aligned} & \mathfrak{n} \\ & \underset{\sim}{7} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{6}{6} \\ & \underset{n}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { ì } \\ & \text { N} \end{aligned}$	$\begin{aligned} & \stackrel{n}{0} \\ & \underset{\sim}{c} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\imath}{\mathrm{N}} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \dot{O} \\ & \underset{\sim}{\mathrm{c}} \\ & \hat{i} \end{aligned}$	$\begin{aligned} & \overparen{\sim} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \\ & 0 \end{aligned}$	$\begin{aligned} & \grave{\varrho} \\ & \stackrel{\varrho}{0} \end{aligned}$	
[+]	[+]	[+]	[+]	[+]	$s_{\text {Max }}=10.18$	9.66	5.59	4.95	3.67	3.54	[-]	[-]	[-]	[-]	[-]

Example 5. [RCI] We have $b=17 \mathrm{~m}, s=3.5 \mathrm{~m}(2 s=7 \mathrm{~m})$. We need to choose a length a from: $a=19 \mathrm{~m}, a=19,5 \mathrm{~m}, a=20 \mathrm{~m}$.

For $a=19 \mathrm{~m} s_{M a x}=10.18 \mathrm{~m}$, for $a=19.5 \mathrm{~m} s_{M a x}=5.59 \mathrm{~m}$, for $a=20 \mathrm{~m} s_{M a x}=3.67 \mathrm{~m}$ (cf. Table 4). The approximation will be satisfactory if we choose $a=19 \mathrm{~m}$ because $2 s=7 \mathrm{~m} \leq 10.18 \mathrm{~m}$.
Test 3.D. The values $s_{M a x}$ fulfilling the condition (D) were determined for the values $e \in[0,1)$.
For given parameter values b, k, e, t it was checked that the value $s_{M a x}$ (the smallest $s_{\max }$) occurs for the angle $t=\pi / 4$ (Figure 6). The approximation of the offset curve off(el(a, b); $s)$ by the ellipse $e l_{2}(a-s, b-s)$ will be satisfactory if we determine $s_{M a x}$ for $t=\pi 44$ and select $s \in\left[0.5, s_{\text {Max }}\right]$.

Table 5: Such width of the lane $s_{M a x}$ that for $s \in\left[0.5, s_{M a x}\right] d_{P_{2} Q_{2}}(s) \leq 0.01$ (determined for $t=\pi / 4$)

The eccentricity e (the length of the semi-axis $a[\mathrm{~m}]$)												
$e=0$	0.1	0.2	0.3	0.4	0.446	0.45	0.5	0.6	0.7	0.8	0.9	0.99
($a=17$)	(17.08)	(17.35)	(17.82)	(18.55)	(19)	(19.04)	(19.63)	(21.25)	(23.80)	(28.33)	(39)	(120.51)
[+]	[+]	$s_{\text {Max }}=15.77 \quad 11.73$		6.62	4.77	4.65	3.21	[-]	[-]	[-]	[-]	[-]

5 Conclusions

The possibility of approximating the offset curves $\operatorname{off}(e l(a, b) ; s)$ by ellipses $e l_{1}(a+s, b+s)$ and $e l_{2}(a-s, b-s)$ for various values a, b, s was numerically analyzed. In section 4 we have checked for which parameter values b, s, e the approximation of the offset curve $\operatorname{off}(e l(a, b) ; s)$ by ellipse $e l_{1}\left(e l_{2}\right)$ is satisfactory. The ellipses which can be used to shape the turbo roundabouts (approved in [9]) were considered in particular. In section 3 the useful formulas for coordinates of points P_{1}, P_{2}, Q_{1} and Q_{2} (for any point P, i.e. for any angle t) were determined.

It was checked that we can get a greater flattening of a small elliptical two-lane turboroundabout (approved in [9]) when we begin to delineate it from the axis of the road.

The recommended (in [9]) width of the road on two-lane circular roundabout in the built-up area is $9.1-10 \mathrm{~m}$. The article contains a wider calculation for two reasons. The legal act (Journal of Laws No. 43) in force in Poland is not very precise in the field of the roundabouts designing and a designer can interpret it widely. "The guidelines" make it more precise, but they are not legally binding (cf. [10]). Secondly, the offset curves of the circle are circles and the ellipse offset curves are not ellipses.

References

[1] Grabowski R.: Ellipse Offset Curves in the Formation of Turbo-Roundabouts. Roads and Bridges - Drogi i Mosty, 14 (2015), 193-202.
[2] Grabowski R.: Turbo-Roundabouts as an Alternative to Standard Roundabouts with the Circular Centre Island. Roads and Bridges - Drogi i Mosty, 11 (2012), 215-231.
[3] Grzegorczyk J.: Mathematics. Publishing House of the Warsaw University of Technology, Warsaw, 1978.
[4] Kowalski M.: Cyclometric functions formulas (with proofs). (2012), Retrieved from http:// www. kowalskimateusz.pl/materialy/wzory3. 1.pdf.
[5] Koźniewski E.: Offsets in Geometric Creation of Roof Skeletons with Varying Slope and Cut-and-fill Problems in Topographic Projection. The Journal of Polish Society for Geometry and Engineering Graphics, Vol. 21 (2010), 29-35.
[6] Koźniewski M.: Thickness Analysis of a Saddle. The Journal of Polish Society for Geometry and Engineering Graphics, Vol. 28 (2016), 25-32.
[7] Murphy T.: The Turbo Roundabout a First in North America. The 2015 Conference of the Transportation Association of Canada Charlottetown, PEI, 2015.
[8] Pottmann H., Asperl A., Hofer M., Kilian A.: Architectural Geometry. Bentley Institute Press. Exton, Pennsylvania USA, 2007.
[9] Tracz M., Chodur J, Gaca S.: Wytyczne projektowania skrzyżowań drogowych. Czę̧́ć II Ronda, Wydawnictwo "RADAMSA", Warszawa, 2001.
[10] Wolski A.: Specyfika projektowania rond w Szwecji. Zeszyty Naukowo-Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji w Krakowie, (92)151, 2010, 295-310.

APROKSYMACJA KRZYWYCH OFFSETOWYCH ELIPSY W PROJEKTOWANIU ROND TURBINOWYCH

Eliptyczne ronda turbinowe są bardziej bezpieczną i efektywniejszą alternatywą dla standardowych rond wielopasmowych. W pracy przedstawiono wyniki analizy numerycznej dla problemu aproksymacji krzywych offsetowych off $(e l(a, b)$; s) danej elipsy el (a, b) o odległości s przez elipsę el(a-s,b-s) oraz el $(a+s, b+s)$. Rozważamy elipsy, które moga posłużyć do kształtowania rond turbinowych. Przetestowano, dla których wartości parametrów s (szerokość pasa ruchu) i e (mimośród) maksymalne odchylenie krzywej offsetowej elipsy od elipsy $e l_{1}\left(e l_{2}\right)$ nie przekracza dokładności tyczenia krzywych w terenie.

