PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel composite joint with corrugated web and cover plates for simultaneously improving anti‑collapse resistance and seismic behavior

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a numerical study on the progressive collapse response of concrete-filled steel tube (CFST) composite joint. A novel beam-column connection by using corrugated web and cover plate is proposed to enhance the collapse resistance of the joint. The simulated response is evaluated in terms of the ultimate load and deformation capacity of the joints for column removal scenario and cyclic loading. The results indicate that the corrugated web and cover plates connection can effectively delay the local buckling and fracture of the steel beam. Those configuration details have a significantly positive effect on the development of internal force, especially in the catenary mechanism stage to provide tensile force. Moreover, only after the fracture of the bottom fange, the corrugated web of the beam begins to contribute to the anti-collapse capacity of the joint. Compared with the CFST column-steel beam joint with fat beam web, the anti-collapse capacity and the vertical displacement of the joint are increased by 75.9% and 92.8%, respectively. Furthermore, a simplifed calculation method for the anti-collapse capacity of the joint is proposed according to the resistance mechanism analysis. In addition, the seismic evaluation of the novel joint based on anti-collapse design indicates that the novel connection details can signifcantly improve the collapse resistance of the joint, without impairing its seismic resistance.
Rocznik
Strony
art. no. e77, 2023
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
  • Western Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China
autor
  • School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
autor
  • Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China
Bibliografia
  • 1. General Services Administration (GSA), Alternate path analysis & design guidelines for progressive collapse resistance, Washington (DC), 2016.
  • 2. Liu XY, Qin WH, Xu ZD, Xi Z. Investigation on the progressive collapse resistance of three-dimensional concrete frame structures reinforced by steel-FRP composite bar. J Build Eng. 2022;59: 105116.
  • 3. Elsanadedy HM, Salloum YA, Alrubaid MA, Almusallam TH, Abbas H. Finite element analyses for anti-collapse potential of precast concrete beam-to-column connections strengthened with steel plates. J Build Eng. 2021;34: 101875.
  • 4. Alshaikh IMH, Bakar BHA, Alwesabi EAH, Zeyad AM, Magbool HM. Finite element analysis and experimental validation of anti-collapse of reinforced rubberized concrete frame. Structures. 2021;33:2361-73.
  • 5. Qin WH, Xi Z, Liu XY, Feng P, Ou X, Yang JX. Experimental and theoretical analyses of the progressive collapse resistance of NSM strengthening RC frames after the failure of a corner column. J Build Eng. 2022;47: 103805.
  • 6. Lin KQ, Chen ZF, Li Y, Lu XZ. Uncertainty analysis on progressive collapse of RC frame structures under dynamic column removal scenarios. J Build Eng. 2022;46: 103811.
  • 7. Feng FF, Wang HJ, Min KS, et al. Multilinear model for anticollapse response of reinforced concrete frames under penultimate column removal scenario. J Build Eng. 2022;47: 103850.
  • 8. Pang B, Wang FL, Yang J, Nyunn S, Azim I. Performance of slabs in reinforced concrete structures to resist anti-collapse. Structures. 2021;33:4843-56.
  • 9. Xie FZ, Gu B, Qian H. Experimental study on the dynamic behavior of steel frames during progressive collapse. J Constr Steel Res. 2021;177: 106459.
  • 10. Bregoli G, Vasdravellis G, Karavasilis TL, Cotsovos DM. Static and dynamic tests on steel joints equipped with novel structural details for anti-collapse mitigation. Eng Struct. 2021;232: 111829.
  • 11. Han QH, Li XX, Liu MJ. Performance analysis and macro model simulation of steel frame structures with beam-column joints using cast steel stifeners for anti-collapse prevention. ThinWalled Struct. 2019;140:404-15.
  • 12. Li GQ, Li LL, Jiang BH, Lu Y. Experimental study on progressive collapse resistance of steel frames under a sudden column removal scenario. J Constr Steel Res. 2018;147:1-15.
  • 13. Pantidis P, Gerasimidis S. Progressive collapse of 3D steel composite buildings under interior gravity column loss. J Constr Steel Res. 2018;150:60-75.
  • 14. Zheng L, Wang WD, Li HW. Progressive collapse resistance of composite frame with concrete-filled steel tubular column under a penultimate column removal scenario. J Constr Steel Res. 2022;189: 107085.
  • 15. Zheng L, Wang WD, Xian W. Experimental and numerical investigation on the anti-collapse performance of fabricated connection with CFST column and hybrid beam. Eng Struct. 2022;256: 114061.
  • 16. Wang JX, Shen YJ, Gao S, Wang WD. Anti-collapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal. Eng Struct. 2022;266: 114635.
  • 17. Elsanaded HM. New moment-resisting beam-column joints to increase anti-collapse resistance of precast concrete buildings. J Build Eng. 2021;44: 102884.
  • 18. Jeyarajan S, Liew JYR, Koh CG. Anti-collapse mitigation approaches for steel-concrete hybrid buildings. Int J Steel Struct. 2015;15(01):175-91.
  • 19. Gao S, Xu M, Fu F, Guo LH. Performance of bolted steel-beam to CFST-column joints using stiffened angles in column-removal scenario. J Constr Steel Res. 2019;159:459-75.
  • 20. Qin X, Wang W, Chen YY. A special reinforcing technique to improve resistance of beam-to-tubular column connections for anti-collapse prevention. Eng Struct. 2016;117:26-39.
  • 21. Gao S. Nonlinear finite element failure analysis of bolted steel-concrete composite frame under column-loss. Journal of Constructional Steel Research. 2019;155:62-76.
  • 22. Qiao HY, Xie XY, Chen Y. Improvement of anti-collapse resistance for a steel frame system with beam-web opening. Eng Struct. 2022;256: 113995.
  • 23. Wang JX, Yang Y, Xian W, Li QY. Anti-collapse mechanism analysis of concrete-filled square steel tubular column to steel beam joint with bolted-welded hybrid connection. Int J Steel Struct. 2020;20(5):1618-35.
  • 24. Scalvenzi M, Gargiulo S, Freddi F, Parisi F. Impact of seismic retrofitting on collapse resistance of RC frame structures. Eng Fail Anal. 2022;131: 105840.
  • 25. Li M, Sasani M. Integrity and anti-collapse resistance of RC structures with ordinary and special moment frames. Eng Struct. 2015;95:71-9.
  • 26. Feng P, Qiang HL, Qin WH, Gao M. A novel kinked rebar configuration for simultaneously improving the seismic performance and anti-collapse resistance of RC frame structures. Eng Struct. 2017;147:752-67.
  • 27. Massumi A, Sadeghi K, Nekuei M. A novel multi-objective structural system against earthquake and uncommon environmental loads. Int J Civil Eng. 2017;15:737-46.
  • 28. Lu XZ, Zhang L, Lin KQ, Li Y. Improvement to hybrid frame systems for seismic and anti-collapse resistance. Eng Struct. 2019;186:227-42.
  • 29. Tian Y, Lin KQ, Zhang L, Lu XZ, Xue HJ. Novel seismic-anticollapse resilient super-tall building system. J Build Eng. 2021;41: 102790.
  • 30. Papavasileiou GS. Optimized design of steel buildings against earthquake and anti-collapse using cables. Int J Progr Sci Technol. 2017;6(01):213-20.
  • 31. Fan X, Li GQ, Sun FF, Zhang Z. Static behavior of H-beams with corrugated webs. J Civil Architect Environ Eng. 2013;35(04):47-54 (in Chinese).
  • 32. Ahmed MS. Numerical study of the effects of web openings on the load capacity of steel beams with corrugated webs. J Constr Steel Res. 2022;196: 107418.
  • 33. Inaama Q, Upadhyay A. Flexural behavior of steel I-girder having corrugated webs and slender fanges. Structures. 2020;27:12-21.
  • 34. Han LH. Concrete filled steel tubular structures-theory and practice. 3rd ed. Beijing: China Science Publishing and Media Ltd.; 2016. (in Chinese).
  • 35. Esmaeily A, Xiao Y. Behavior of reinforced concrete columns under variable axial loads: analysis. ACI Struct J. 2005;102(5):736-44.
  • 36. Yu HL, Jeong DY. Application of a stress triaxiality dependent fracture criterion in the finite element analysis of unnotched Charpy specimens. Theor Appl Fract Mech. 2010;54(1):54-62.
  • 37. Bao YB, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci. 2004;46(1):81-98.
  • 38. Zhou TH, Li WC, Guan Y, Bai L. Damage analysis of steel frames under cyclic load based on stress triaxiality. Eng Mech. 2014;31(07):146-55 (in Chinese).
  • 39. Li B, Gao CY. Experimental research of aseismic behavior for concrete-filled rectangular steel tubular frame joints. Eng Mech. 2007;24(S2):177-81 (in Chinese).
  • 40. Wen Y, Chen MJ, Han HP. Experimental research on seismic behavior of steel pipe bulk mass recycled concrete column-steel beam framework. J Build Struct. 2017;38(S1):41-9 (in Chinese).
  • 41. Naeim F. The seismic design handbook. 2nd ed. London: Kluwer Academic Publishers; 2001. p. 418.
  • 42. Wilkinson S, Hurdman G, Crowther A. A moment resisting connection for earthquake resistant structures. J Constr Steel Res. 2006;62(3):295-302.
  • 43. National Standard of the People’s Republic of China. Standard for design of steel structures, Beijing, 2017 (in Chinese).
  • 44. China Association for Engineering Construction Standardization. Technical specification for steel structures with corrugated webs, Beijing, 2011 (in Chinese).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff4237de-0973-4eb1-8d20-1ceb10acf1d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.