Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We give a discretization of behaviors of timed automata, in which timed languages are represented as sets of words containing action symbols, a clock tick symbol 1, and two delay symbols δ− (negative delay) and δ+ (positive delay). Unlike the region construction, our discretization commutes with intersection. We show that discretizations of timed automata are, in general, context-sensitive languages over Σ ∪ {1, δ+, δ−}, and give a class of counter automata that accepts exactly the class of languages that are discretizations of timed automata, and show that its emptiness problem is decidable.
Wydawca
Czasopismo
Rocznik
Tom
Strony
389--407
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Université Paris-Est, LACL (EA 4219), UPEC, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
Bibliografia
- [1] Alur, R., Dill, D.: A theory of timed automata, Theoretical Computer Science, 126, 1994, 183–235.
- [2] Asarin, E.: Challenges in timed languages, Bulletin of EATCS, 83, 2004, 106–120.
- [3] Asarin, E., Caspi, P., Maler, O.: Timed regular expressions, Journal of the ACM, 49, 2002, 172–206.
- [4] Asarin, E., Dima, C.: Balanced timed regular expressions, Electronic Notes in Theoretical Computer Science, 68, 2002, 1–18.
- [5] Beauquier, D.: Pumping Lemmas for Timed Automata, Proceedings of the First International Conference on Foundations of Software Science and Computation Structure (FoSSaCS’98), LNCS 1378, 1998, 81–94.
- [6] Bouyer, P., Petit, A.: Decomposition and composition of timed automata, Proceedings of 26th International Colloquium on Automata, Languages and Programming (ICALP’99), LNCS 1644, 1999, 210–219.
- [7] Bouyer, P., Petit, A.: A Kleene/Büchi-like theorem for clock languages, Journal of Automata, Languages and Combinatorics, 7(2), 2002, 167–186.
- [8] Bouyer, P., Petit, A., Th´erien, D.: An algebraic characterization of data and timed languages, Proceedings of the 12th International Conference on Concurrency Theory (CONCUR’2001), LNCS 2154, 2001, 248–261.
- [9] Dima, C.: Th´eorie alg´ebrique des langages formels temps r´eel, Ph.D. Thesis, Universit´e Joseph Fourier Grenoble, France, 2001.
- [10] Dima, C.: Computing reachability relations in timed automata, Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS’02), 2002, 177–186.
- [11] Dima, C.: A class of automata for computing reachability relations in timed systems, in: Proceedings of the NATO Advanced Research Workshop on Verification of Infinite State Systems with Applications to Security (VISSAS’05) (E. Clarke, M. Minea, F. L. T¸ iplea, Eds.), NATO ARW Series, IOS Press, 2006, 69–89.
- [12] D’Souza, D., Thiagarajan, P. S.: Product Interval Automata: A Subclass of Timed Automata, Proceedings of the 19th Conference on the Foundations of Software Technology and Theoretical Computer Science FSTTCS’99), 1738, 1999, 60–71.
- [13] Herrmann, P.: Timed Automata and Recognizability, Information Processing Letters, 65, 1998, 313–318.
- [14] Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Computation, Addison-Wesley/Narosa Publishing House, 1992.
- [15] Larsen, K. G., Pettersson, P., Yi,W.: UPPAAL: Status & Developments, Proceedings of the 9th International Conference on Computer Aided Verification (CAV’97), LNCS 1254, 1997, 456–459.
- [16] Yovine, S.: Model-checking timed automata, Lectures on Embedded Systems (G. Rozenberg, F. Vaandrager, Eds.), LNCS 1494, 1998, 114–152.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff3edc53-6882-4858-adb2-65782a96ea70