Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In recent years, Morocco persistent drought and changing land use practices have significantly impacted the nation wetlands, particularly affecting water resource availability. This research aims to elucidate the effects of climate change and human activities Lake Abkhane. Using open-source hydrological modeling tools, the study calculates drought metrics such the Standardized Precipitation Index, Standardized Precipitation-Evapotranspiration Index, and Palmer Drought Severity Index. It also involves cartographic representation of land use and continuous monitoring of Lake Abkhane surface area from 2015 to 2023 using Sentinel-2 Level 1C imagery. Findings reveal significant annual precipitation variability, with peaks in 2006, 2010, and 2018, followed by a notable decline post-2018. The dynamics and regeneration potential of the lake’s waters have been significantly impacted by the combination of drought (p = 0.000639 < 0.05) and land use change in the surrounding area. This study emphasizes how urgently water management authorities must address how human activity and drought are negatively affecting this vital wetland ecosystem.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
42--53
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Laboratory of Biotechnology, Bio-resources and Bioinformatics, Khénifra Higher School of Technology, Sultane Moulay Slimane University, Beni Mellal 23000, Morocco
autor
- Laboratory of Multidisciplinary Research in Science, Technology and Society, Khénifra Higher School of Technology, Sultane Moulay Slimane University, Beni Mellal 23000, Morocco
autor
- Laboratory of “Scientific Research and Educational Innovation”, Regional Center for Education and Training Professions, (CRMEF Rabat-Salé-Kénitra), Morocco
autor
- Laboratory of Biotechnology, Bio-resources and Bioinformatics, Khénifra Higher School of Technology, Sultane Moulay Slimane University, Beni Mellal 23000, Morocco
Bibliografia
- 1. Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., Hegewisch, K.C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data. Available at: https://www.nature.com/articles/sdata2017191 (Accessed: 11 December 2023). https://doi.org/10.1038/sdata.2017.191
- 2. El-Bouhali, A., Amyay, M., Ech-Chahdi, K.E.O. (2024). Changes in water surface area of the Middle Atlas-Morocco lakes: A response to climate and human effects. 221–232. https://doi.org/10.26833/ ijeg.1391957
- 3. Adallal, R. (2019). Variabilité environnementale des lacs du moyen Atlas marocain: fonctionnement hydrogéochimique, hydrologique et réponse au changement climatique. These de doctorat. Aix-Marseille. Available at: https://theses. fr/2019AIXM0128 (Accessed: 22 October 2023).
- 4. Aoubouazza, M., Rajel, R. and Essafi, R. (2019). ‹Impact des phénomènes climatiques extrêmes sur les ressources en eau et l’agriculture au Maroc’, Revue Marocaine des Sciences Agronomiques et Vétérinaires, 7(2). Available at: https://www. agrimaroc.org/index.php/Actes_IAVH2/article/ view/705(Accessed: 12 June 2023)
- 5. Bahouar, E. H., Abba, E. H., Loukili, A., Loubna, M., & Karim, K. (2024). Note on the Diversity of Freshwater Fish Parasites in the Mediterranean Basin: Case of the Barbus Genus. Egyptian Journal of Aquatic Biology and Fisheries, 28(4), 821–832. https://doi.org/10.21608/ejabf.2024.369533
- 6. Beguería, S., Vicente Serrano, S. M., Reig-Gracia, F., & Latorre Garcés, B. (2023). ‘SPEIbase v.2.8 [Dataset]’. Digital.CSIC. Available at: https://doi.org/10.20350/DIGITALCSIC/15121
- 7. Chand, S., & Dhaliwal, L. K. (2024). Relationship of ENSO and Standardized Precipitation Index (SPI) to Characterize Drought at Different Locations of Punjab, India. International Journal of Environment and Climate Change, 14(3), 95–105. https://doi.org/10.9734/ijecc/2024/v14i34022
- 8. Chillasse, L. and Dakki, M. (2004). Potentialités et statuts de conservation des zones humides du Moyen-Atlas (Maroc), avec référence aux influences de la sécheresse, Sécheresse, 15.
- 9. Chillasse, L., Dakki, M. and Abbassi, M. (2001). Valeurs et fonctions écologiques des Zones humides du Moyen Atlas (Maroc).
- 10. Dakki M. (2015). Inventaire des Zones Humides du Maroc Rapport prédéfinitif. Rapport, GREPOM/ Conv. Ramsar/HCEFLCD, 62.
- 11. El-Bouhali, A., Amyay, M., & Ech-Chahdi, K.E.O. (2024). Changes in water surface area of the Middle Atlas-Morocco lakes: A response to climate and human effects. International Journal of Engineering and Geosciences, 9(2), 221–232.https://doi.org/10.26833/ijeg.1391957
- 12. Elhamdouni, D., Arioua, A. and Karaoui, I. (2022). Monitoring urban expansion using SVM classification approach in Khenifra city (Morocco), Modeling Earth Systems and Environment, 8(1), 293–298. Available at : https://doi.org/10.1007/ s40808-021-01092-w
- 13. Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes’, Scientific Data, 2(1), 150066. Available at: https://doi.org/10.1038/sdata.2015.66
- 14. Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., Lonjou, V., Lafrance, B., Massera, S., Gaudel-Vacaresse, A., Languille, F., Alhammoud, B., Viallefont, F., Pflug, B., Bieniarz, J., Clerc, S., Pessiot, L., Trémas, T., Cadau, E., Fernandez, V. (2017). Copernicus Sentinel-2A calibration and products validation status, Remote Sensing, 9(6), 584. Available at: https://doi.org/10.3390/rs9060584
- 15. Haddout, S., Priya, K.L. and Boko, M. (2018). Thermal response of Moroccan lakes to climatic warming: first results, Annales de Limnologie - International Journal of Limnology, 54, 2. Available at: https://doi.org/10.1051/limn/2017029
- 16. Hailesilassie, W.T., Ayenew, T., & Tekleab, S. (2023). A comparative study of drought characteristics using meteorological drought indices over the central main Ethiopian Rift. Hydrology Research, 54(3), 313–329. https://doi.org/10.2166/nh.2023.091
- 17. Tang, H., Zhang, F., Zeng, C., Wang, L., Zhang, H., Xiang, Y. & Yu, Z. (2023). Simulation of Runoff through Improved Precipitation: The Case of Yamzho Yumco Lake in the Tibetan Plateau. Water. https://typeset.io/papers/simulation-of-runoff-through-improved-precipitation-the-case-jrzyjsti
- 18. Huntington, J.L., Hegewisch, K.C., Daudert, B., Morton, C.G., Abatzoglou, J.T., McEvoy, D.J., & Erickson, T. (2017). Climate engine: Cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding. Bulletin of the American Meteorological Society, 98(11), 2397–2410. Available at: https://doi.org/10.1175/BAMS-D-15-00324.1
- 19. Id Abdellah, H., Vidal, L., Benkaddour, A., Rhoujjati, A., Jouve, G., Tachikawa, K., Sonzogni, C., Mazur, J.-C., Paillès, C., & Sylvestre, F. (2021). Palaeohydrological changes recorded from a small Moroccan Middle Atlas Pond during the last 6000 cal. yr BP: a multi-proxy study, Journal of Paleolimnology, 65(3), 279–297. Available at: https://doi.org/10.1007/s10933-020-00166-6
- 20. Jouve, G., Vidal, L., Adallal, R., Rhoujjati, A., Benkaddour, A., Chapron, E., Tachikawa, K., Bard, E., Courp, T., Dezileau, L., Hebert, B., Rapuc, W., Simonneau, A., Sonzogni, C., & Sylvestre, F (2019a, b). Recent hydrological variability of the Moroccan Middle Atlas Mountains inferred from microscale sedimentological and geochemical analyses of lake sediments, Quaternary Research, 91(1), 414–430. Available at: https://doi.org/10.1017/qua.2018.94
- 21. Mishra, D.K., Kumar, R., Singh, B.R., & Singh, P.V. (2023). Drought forecasting using standard precipitation index based on rainfall of western region. International Journal of Environment and Climate Change, 13(11), 687–701. https://doi.org/10.9734/ijecc/2023/v13i113214
- 22. Montero, D., Aybar, C., Mahecha, M. D., Martinuzzi, F., Söchting, M., & Wieneke, S. 2023. A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research. Scientific Data, 10(1), 197. https://doi.org/10.1038/s41597-023-02096-0
- 23. Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., Lymburner, L., McIntyre, A., Tan, P., Curnow, S., & Ip, A. (2016). Water observations from space: Mapping surface water from 25years of Landsat imagery across Australia, Remote Sensing of Environment, 174, 341–352. Available at: https://doi.org/10.1016/j.rse.2015.11.003
- 24. Musie, M., Momblanch, A., & Sen, S. (2021). Exploring future global change-induced water imbalances in the Central Rift Valley Basin, Ethiopia. Climatic Change, 164(3), 47. https://doi.org/10.1007/S10584-021-03035-X
- 25. Nourelbait, M., Rhoujjati, A., Benkaddour, A., Carré, M., Eynaud, F., Martinez, P., & Cheddadi, R. (2015). Climate changes since the mid-Holocene in the Middle Atlas, Morocco. https://doi.org/10.5194/ cpd-11-4097-2015
- 26. Obregón, M.Á., Rodrigues, G., Costa, M.J., Potes, M., & Silva, A.M. (2019). Validation of ESA Sentinel-2 L2A aerosol optical thickness and columnar water vapour during 2017–2018, Remote Sensing, 11(14), 1649. Available at: https://doi.org/10.3390/rs11141649
- 27. Pasquarella, V.J., Holden, C.E., Kaufman, L., & Woodcock, C.E. (2016). From imagery to ecology: leveraging time series of all available Landsat observations to map and monitor ecosystem state and dynamics’, Remote Sensing in Ecology and Conservation. Edited by H. Nagendra and K. He, 2(3), 152– 170. Available at: https://doi.org/10.1002/rse2.24
- 28. Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A.S. (2016). High-resolution mapping of global surface water and its long-term changes, Nature, 540(7633), 418–422. Available at: https://doi.org/10.1038/nature20584
- 29. Ramachandra, T.V., Asulabha, K.S., Jaishanker, R. (2024). Editorial wetlands for human well-being. Journal of Environmental Biology, 45(2). http://doi.org/10.22438/jeb/45/2/Editorial
- 30. Tuttle, S. and Salvucci, G. (2016). Empirical evidence of contrasting soil moisture–precipitation feedback across the United States. 352(6287). https://doi.org/10.1126/science.aaa7185
- 31. Palmate, S.S., Pandey, A., Tigabu, T.B., Mercado Bettín, D., Fohrer, N., Wagner, P.D. (2023). A conceptual framework to disentangle land use and climate change impacts on water balance components and sediment yield. Santosh S. Palmate. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-04179-9
- 32. Thirel, G., Dorchies, D., Delaigue, O., Torres, L. N., & Elmalki, D. (2022). Évaluation de l’impact du changement climatique et de l’adaptation avec des outils de modélisation hydrologiques libres.
- 33. Tufaner, F. and Özbeyaz, A. (2020). Estimation and easy calculation of the Palmer Drought Severity Index from the meteorological data by using the advanced machine learning algorithms, Environmental Monitoring and Assessment, 192(9), 576. Available at: https://doi.org/10.1007/s10661-020-08539-0
- 34. Vicente-Serrano, S.M., Beguería, S. (2016). Comment on Candidate Distributions for Climatological Drought Indices (SPI and SPEI) by James H. Stagge et al. International Journal of Climatology. 36, 2120–213 https://doi.org/10.1002/joc.4474
- 35. Zhang, W.-S., Lu, C., & Zhang, Y.-Z. (2023). Assessment of lake area in response to climate change at varying elevations: A case study of Mt. Tianshan, Central Asia. Available at: https://doi.org/10.4319/ lo.2009.54.6_part_2.2273
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff3b3b32-6388-42c7-a88c-9b66ffe0b9e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.