PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Characteristics of the MK-40 and MA-40 Membranes for Industrial Wastewater Treatment – A Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Industrial application of ion exchange membranes (IEMs) for saline water desalination is widely used. In this review, two kinds of IEMs were targeted and focused on: cation-exchange membrane (MK-40) and anion-exchange membrane (MA-40). The characteristics of ion-exchange capacity, structural water content, electrical conductivity and diffusion permeability of counter ions and co-ions, as well as the properties in diffusion of alkaline media were reviewed. IEMs are anionic or cationic fixed exchange groups; the diffusion flows of the two IEMs are scarcely impacted by the kind of an ion selective membrane, as well as of the concentration dependence. The salt diffusion coefficient increases alongside the water content in the membrane, whereas the electrical conductivity increases along with the ion exchange capacity (IEC). In addition, the permeability of the charged polymer increases along with the salt concentration, while for the uncharged polymer it decreases. Thus, the methods and formulas for determining the salt diffusion coefficient and osmotic permeability were studied. Evidently, the differences in the microstructure between membranes will significantly affect the permeability of salt transport in IEMs.
Twórcy
  • Department of Fuel and Energy Engineering Technologies, Technical College Kirkuk, Northern Technical University, Mosul, Iraq
  • College of Water Resources Engineering, Al-Qasim Green University, Al-Qasim Province, Babylon, Iraq
  • Department of Petroleum Engineering, College of Engineering, University of Misan, Misan, Iraq
  • Department of Technological Processes, Devices and Technosphere Safety, Tambov State Technical University, Tambov, Russia
Bibliografia
  • 1. Alekseeva, N.V., Arkhipov, A. I., and Borisov, P. A. (2012). Study of Diffusive and Osmotic Permeability of MK-40 and MA-40 Electrodialysis Membranes in Two-Component Solutions of Copper, Zinc, Nickel and Sodium Salts. Вестник ТГТУ, 18 (4), 923–927.
  • 2. Berezina, N.P., Kononenko, N.A., Dyomina, O.A. & Gnusin, N.P. (2008). Characterization of ion-exchange membrane materials: properties vs structure. Adv Colloid Interface Sci, 139(1-2), 3-28.
  • 3. Buck, R.P. (1984). Kinetics of bulk and interfacial ionic motion: microscopic bases and limits for the nernst—planck equation applied to membrane systems. Journal of Membrane Science, 17(1), 1-62.
  • 4. Chaabouni, A., Guesmi, F., Louati, I., Hannachi, C. & Hamrouni, B. (2015). Temperature effect on ion exchange equilibrium between CMX membrane and electrolytes solutions. Journal of Water Reuse and Desalination, 5(4), 535-541.
  • 5. Chehayeb, K.M. & Lienhard, J.H. (2019). On the electrical operation of batch electrodialysis for reduced energy consumption. Environmental Science: Water Research & Technology, 5(6), 1172-1182.
  • 6. Ciferri, A. & Perico, A. 2012. Ionic interactions in natural and synthetic macromolecules. John Wiley & Sons.
  • 7. Filippov, A., Kononenko, N., Demina, O.J.C.J. (2017). Diffusion of electrolytes of different natures through the cation-exchange membrane. 79(4), 556-566.
  • 8. Fontananova, E., Messana, D., Tufa, R.A., Nicotera, I., Kosma, V., Curcio, E., van Baak, W., Drioli, E. & Di Profio, G. (2017). Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion. Journal of Power Sources, 340, 282-293.
  • 9. Geise, G.M., Cassady, H.J., Paul, D.R., Logan, B.E. & Hickner, M.A.J.P.C.C.P. (2014a). Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Phys. Chem. Chem. Phys., 16(39), 21673-21681.
  • 10. Geise, G.M., Freeman, B.D. & Paul, D.R. (2013). Sodium chloride diffusion in sulfonated polymers for membrane applications. Journal of Membrane Science, 427, 186-196.
  • 11. Geise, G.M., Paul, D.R., Freeman, B.D. (2014b). Fundamental water and salt transport properties of polymeric materials. Progress in Polymer Science, 39(1), 1-42.
  • 12. Golubenko, D., Pourcelly, G. & Andrey, Y. (2018). Permselectivity and ion-conductivity of grafted cation-exchange membranes based on UV-oxidized polymethylpenten and sulfonated polystyrene. Separation and Purification Technology, 207.
  • 13. Hosseini, S.M., Madaeni, S.S., Asiani, H. & Heidari, A.R. (2012). Preparation and Electrochemical Characterization of Monovalent Ion Selective Poly (Vinyl Chloride)-Blend-Poly (Styrene-Co-Butadiene) Heterogeneous Cation Exchange Membrane Coated with Poly (Methyl Methacrylate). Separation Science and Technology, 47(10), 1443-1454.
  • 14. Izquierdo-Gil, M.A., Villaluenga, J.P.G., Muñoz, S. & Barragán, V.M. (2020). The Correlation between the Water Content and Electrolyte Permeability of Cation-Exchange Membranes. International Journal of Molecular Sciences, 21(16).
  • 15. Kamcev, J., Doherty, C., Lopez, K., Hill, A., Paul, D. & Freeman, B. (2018a). Effect of Fixed Charge Group Concentration on Salt Permeability and Diffusion Coefficients in Ion Exchange Membranes. Journal of Membrane Science, 566.
  • 16. Kamcev, J., Paul, D.R., Manning, G.S., Freeman, B.D. (2018b). Ion diffusion coefficients in ion exchange membranes: significance of counterion condensation. Macromolecules, 51(15), 5519-5529.
  • 17. Kamcev, J., Paul, D.R., Manning, G.S. & Freeman, B.D. (2017). Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes. ACS Applied Materials & Interfaces, 9(4), 4044-4056.
  • 18. Kingsbury, R.S., Zhu, S., Flotron, S. & Coronell, O. (2018). Microstructure Determines Water and Salt Permeation in Commercial Ion-Exchange Membranes. ACS Applied Materials & Interfaces, 10(46), 39745-39756.
  • 19. Kozaderova, O.A., Kim, K.B., Gadzhiyevа, C.S. & Niftaliev, S.I. (2020). Electrochemical characteristics of thin heterogeneous ion exchange membranes. Journal of Membrane Science, 604, 118081.
  • 20. Kozmai, A.E., Nikonenko, V.V., Zyryanova, S., Pismenskaya, N.D., Dammak, L. & Baklouti, L. (2019). Modelling of anion-exchange membrane transport properties with taking into account the change in exchange capacity and swelling when varying bathing solution concentration and pH. Journal of Membrane Science, 590, 117291.
  • 21. Li, J., Zhao, Z., Yuan, S., Zhu, J. & Van der Bruggen, B. (2018). High-Performance Thin-Film-Nanocomposite Cation Exchange Membranes Containing Hydrophobic Zeolitic Imidazolate Framework for Monovalent Selectivity. Applied Sciences, 8(5).
  • 22. Lopatkova, G.Y., Volodina, E.I., Pis’menskaya, N.D., Fedotov, Y.A., Cot, D. & Nikonenko, V.V. (2006). Effect of chemical modification of ion-exchange membrane MA-40 on its electrochemical characteristics. Russian Journal of Electrochemistry, 42(8), 847-854.
  • 23. Luo, J., Wu, C., Wu, Y., Xu, T. (2010). Diffusion dialysis of hydrochloride acid at different temperatures using PPO–SiO2 hybrid anion exchange membranes. Journal of Membrane Science, 347(1), 240-249.
  • 24. Luo, T., Abdu, S. & Wessling, M. (2018). Selectivity of ion exchange membranes: A review. Journal of Membrane Science, 555, 429-454.
  • 25. Melnikov, S., Kolot, D., Nosova, E. & Zabolotskiy, V. (2018). Peculiarities of transport-structural parameters of ion-exchange membranes in solutions containing anions of carboxylic acids. Journal of Membrane Science, 557, 1-12.
  • 26. Nikonenko, V., Urtenov, M., Mareev, S. & Pourcelly, G. (2020). Mathematical Modeling of the Effect of Water Splitting on Ion Transfer in the Depleted Diffusion Layer Near an Ion-Exchange Membrane. Membranes, 10(2).
  • 27. Nikonenko, V.V., Pismenskaya, N.D., Belova, E.I., Sistat, P., Huguet, P., Pourcelly, G. & Larchet, C. (2010). Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Advances in Colloid and Interface Science, 160(1), 101-123.
  • 28. Pismenskaya, N., Melnik, N., Nevakshenova, E., Nebavskaya, K. & Nikonenko, V. (2012). Enhancing Ion Transfer in Overlimiting Electrodialysis of Dilute Solutions by Modifying the Surface of Heterogeneous Ion-Exchange Membranes. International Journal of Chemical Engineering, 2012, 528290.
  • 29. Saito, M., Arimura, N., Hayamizu, K. & Okada, T. (2004). Mechanisms of Ion and Water Transport in Perfluorosulfonated Ionomer Membranes for Fuel Cells. The Journal of Physical Chemistry B, 108(41), 16064-16070.
  • 30. Sarapulova, V., Shkorkina, I., Mareev, S., Pismenskaya, N., Kononenko, N., Larchet, C., Dammak, L. & Nikonenko, V. (2019a). Transport Characteristics of Fujifilm Ion-Exchange Membranes as Compared to Homogeneous Membranes АМХ and СМХ and to Heterogeneous Membranes MK-40 and MA-41. Membranes, 9(7).
  • 31. Sarapulova, V.V., Titorova, V.D., Nikonenko, V.V. & Pismenskaya, N.D. (2019b). Transport Characteristics of Homogeneous and Heterogeneous IonExchange Membranes in Sodium Chloride, Calcium Chloride, and Sodium Sulfate Solutions. Membranes and Membrane Technologies, 1(3), 168-182.
  • 32. Shutkina, Е.А., Nevakshenova, Е.Е., Pismenskaya, N.D., Mareev, S.A., Nikonenko, V.V. (2015). Diffusion Permeability of the Anion-Exchange Membranes in Sodium Dihydrogen Phosphate Solution. Condensed Matter and Interphases, 17(4), 566-578.
  • 33. Singh, R. 2016. Desalination and On-site Energy for Groundwater Treatment in Developing Countries Using Fuel Cells, pp. 135-162.
  • 34. Strathmann, H. 2004. Ion-exchange membrane separation processes. Elsevier.
  • 35. Strathmann, H., Grabowski, A. & Eigenberger, G. (2013). Ion-Exchange Membranes in the Chemical Process Industry. Industrial & Engineering Chemistry Research, 52(31), 10364-10379.
  • 36. Tanaka, Y. (2011). Ion-exchange membrane electrodialysis for saline water desalination and its application to seawater concentration. Industrial & Engineering Chemistry Research, 50(12), 7494-7503.
  • 37. Tanaka, Y., Moon, S.-H., Nikonenko, V.V. & Xu, T. 2007. Ion-exchange membranes, Hindawi.
  • 38. Tedesco, M., Hamelers, H.V.M. & Biesheuvel, P.M. (2017). Nernst-Planck transport theory for (reverse) electrodialysis: II. Effect of water transport through ion-exchange membranes. Journal of Membrane Science, 531, 172-182.
  • 39. Titorova, V., Sabbatovskiy, K., Sarapulova, V., Kirichenko, E., Sobolev, V. & Kirichenko, K. (2020). Characterization of MK-40 Membrane Modified by Layers of Cation Exchange and Anion Exchange Polyelectrolytes. Membranes, 10(2).
  • 40. Vasil’eva, V.I., Akberova, E.M., Kostylev, D.V. & Tzkhai, A.A. (2019). Diagnostics of the Structural and Transport Properties of an Anion-Exchange Membrane MA-40 after Use in Electrodialysis of Mineralized Natural Waters. Membranes and Membrane Technologies, 1(3), 153-167.
  • 41. Vasil’eva, V.I., Akberova, E.M., Zhiltsova, A.V., Chernykh, E.I., Sirota, E.A. & Agapov, B.L. (2013). SEM diagnostics of the surface of MK-40 and MA40 heterogeneous ion-exchange membranes in the swollen state after thermal treatment. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 7(5), 833-840.
  • 42. Vasil’eva, V.I., Pismenskaya, N.D., Akberova, E.M. & Nebavskaya, K.A. (2014). Effect of thermochemical treatment on the surface morphology and hydrophobicity of heterogeneous ion-exchange membranes. Russian Journal of Physical Chemistry A, 88(8), 1293-1299.
  • 43. Villen‐Guzman, M., Arhoun, B., Vereda‐Alonso, C., Gomez‐Lahoz, C., Rodriguez‐Maroto, J.M., Paz‐Garcia, J. (2019). Electrodialytic processes in solid matrices. New insights into battery recycling. A review. Journal of Chemical Technology & Biotechnology, 94(6), 1727-1738.
  • 44. Warsinger, D.M., Chakraborty, S., Tow, E.W., Plumlee, M.H., Bellona, C., Loutatidou, S., Karimi, L., Mikelonis, A.M., Achilli, A., Ghassemi, A., Padhye, L.P., Snyder, S.A., Curcio, S., Vecitis, C.D., Arafat, H.A., Lienhard, J.H. (2018). A review of polymeric membranes and processes for potable water reuse. Progress in Polymer Science, 81, 209-237.
  • 45. Xu, T. (2005). Ion exchange membranes: State of their development and perspective. Journal of Membrane Science, 263(1), 1-29.
  • 46. Yip, N.Y. & Elimelech, M. (2014). Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis. Environmental Science & Technology, 48(18), 11002-11012.
  • 47. Zabolotskii, V.I., Protasov, K.V. & Sharafan, M.V. (2010). Sodium chloride concentration by electrodialysis with hybrid organic-inorganic ion-exchange membranes: An investigation of the process. Russian Journal of Electrochemistry, 46(9), 979-986.
  • 48. Zhang, W., Ma, J., Wang, P., Wang, Z., Shi, F. & Liu, H. (2016). Investigations on the interfacial capacitance and the diffusion boundary layer thickness of ion exchange membrane using electrochemical impedance spectroscopy. Journal of Membrane Science, 502, 37-47.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff3781be-c132-4e9f-b8fa-94f49121608a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.