Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the mechanism of interaction between hydrogen sulfide ions and malachite was investigated using density functional theory (DFT) calculations and time of flight secondary ion mass spectrometry (TOF-SIMS). The DFT calculations showed that HS− adsorption on the malachite (−201) surface was stronger than that of S adsorption resulting from the higher number of electron transfers in the solution which accelerated the sulfidation reaction rate. Density of states (DOS) analysis showed that the near Fermi level was jointly contributed to by the Cu 3d, O 2p, O 2S, and S 3P orbits after adsorption of HS− on the malachite (–201)surface. It was found that the 2p orbital of O and the 3p orbital of S overlapped, indicating that S not only reacted with Cu, but also with O. The TOF-SIMS detected S− and CuS2− fragment ion peaks in the 0−150 m/z negative segment of mass spectra. TOF-SIMS also showed that copper sulfide films of certain thicknesses were formed, demonstrating the effectiveness of hydrogen sulfide sulfidation in flotation processes.
Słowa kluczowe
Rocznik
Tom
Strony
71--79
Opis fizyczny
Bibliogr. 33 poz., rys. kolor.
Twórcy
autor
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China
- Faculty of Science, Honghe University, Mengzi 661100, PR China
autor
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China
autor
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China
Bibliografia
- BESSIERE, J., HOUSNI, A.E., PREDALI, J.J., 1991. Dielectric study of activation and deactivation of malachite by sulfide ions. Int. J. Min. Process. 33, 165-183.
- CAO, Z.F., ZHONG, H., LIU, G.Y., ZHAO, S.J., 2009. Techniques of copper recovery from Mexican copper oxide ore. Min. Sci. Techno. 19, 45-48.
- CASTRO, S., SOTO, H., GOLDFARB, J., LASKOWSKI, J., 1974a. Sulfidizing reactions in the flotation of oxidized copper mineral, I. Chemical factors in the sulfidization of copper mineral. Int. J. Miner. Process. 1, 141-149.
- CASTRO, S., SOTO, H., GOLDFARB, J., LASKOWSKI, J., 1974b. Sulphidizing reactions in the flotation of oxidized copper minerals, II. Role of the adsorption and oxidation of sodium sulphide in the flotation of chrysocolla and malachite. Int. J. Miner. Process. 1, 151-161.
- CHEN, Y., LIU, M., CHEN, J.H., LI, Y.Q., ZHAO, C.H., MU, X., 2018. A density functional based tight binding (DFTB plus ) study on the sulfidization-amine flotation mechanism of smithsonite. Appl. Surf. Sci. 458, 454-463.
- CLARK, S.J., SEGALL, M.D., PICKARD, C.J., HASNIP, P.J., PROBERT, M.I.J., REFSON, K., PAYNE, M.C., 2005. First principles methods using CASTEP. Z. Kristallogr. 220, 567-570.
- CORIN, K.C., KALICHINI, M., O’CONNOR, C.T., SIMUKANGA, S., 2017. The recovery of oxide copper minerals from a complex copper ore by sulphidisation. Min. Eng. 102, 15-17.
- EJTEMAEI, M., GHARABAGHI, M., IRANNAJAD, M., 2014. A review of zinc oxide mineral beneficiation using flotation method. Adv. Colloid. Interfac. 206, 68-78.
- FENG, Q.C., ZHAO, W.J., WEN, S.M., CAO, Q.B., 2017. Copper sulfide species formed on malachite surfaces in relation to flotation. J. Ind. Eng. Chem. 48, 125-132.
- FENG, Q.C., ZHAO, W.J., WEN, S.M., 2018a. Ammonia modification for enhancing adsorption of sulfide species onto malachite surfaces and implications for flotation. J. Alloy. Compd. 744, 301-309.
- FENG, Q.C., ZHAO, W.J., WEN, S.M., 2018b. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation. Appl. Surf. Sci. 436, 823-831.
- GUSH, J.C.D., 2005. Flotation of oxide minerals by sulphidization-the development of a sulphidization control system for laboratory testwork. J. S. Afr. Inst. Min. Metall. 105, 193-197.
- HUANG, Y.G., NIU, X.X., LIU, G.Y., LIU, J., 2019. Novel chelating surfactant 5-heptyl-1,2,4-triazole-3-thione: Its synthesis and flotation separation of malachite against quartz and calcite. Min. Eng. 131, 342-352.
- KALICHINI, M., CORIN, K.C., O’CONNOR, C.T., SIMUKANGA, S., 2017. The role of pulp potential and the sulphidization technique in the recovery of sulphide and oxide copper minerals from a complex ore. J. S. Afr. Inst. Min. Metall. 117, 803-810.
- KONGOLO, K., KIPOKA, M., MINANGA, K., MPOYO, M., 2003. Improving the efficiency of oxide copper-cobalt ores flotation by combination of sulphidisers. Miner. Eng. 16, 1023-1026.
- LAI, H., DENG, J.S., LIU, Q.J., WEN, S.M., SONG, Q., 2021. Surface chemistry investigation of froth flotation products of lead-zinc sulfide ore using ToF-SIMS and multivariate analysis. Sep. Purif. Technol. 254, 117655.
- LEE, K., ARCHIBALD, D., MCLEAN, J., REUTER, M.A., 2009. Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors. Min. Eng. 22, 395-401.
- LEE, J.S., NAGARAJ, D.R., COE, J.E., 1998. Practical aspects of oxide copper recovery with alkylhydroxamates. Miner. Eng. 10, 929-939.
- LI, L.Q., ZHAO, J.H., XIAO, Y.Y., HUANG, Z.Q., GUO, Z.Z., LI, F.X., DENG, L.Q., 2019. Flotation performance and adsorption mechanism of malachite with tert-butylsalicylaldoxime. Sep. Purif. Technol. 210, 843-849.
- LIU, G.Y., HUANG, Y.G., QU, X.Y., XIAO, J.J., YANG, X.L., XU, Z.H., 2016. Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1,2,4-triazole-5-thione to malachite by TOF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation. Colloid. Surface. A. 503, 34-42.
- LIU, C., ZHU, G.L., SONG, S.X., LI, H.Q., 2018. Interaction of gangue minerals with malachite and implications for the sulfidization flotation of malachite. Colloid. Surface. A. 555, 679-684.
- LIU, C., SONG, S.X., LI, H.Q., LI, Y.B., AI, G.H., 2019. Elimination of the adverse effect of calcite slimes on the sulfidization flotation of malachite in the presence of water glass. Colloid. Surface. A. 563, 324-329.
- MALGHAN, S.G., 1986. Role of sodium sulfide in the flotation of oxidized copper, lead, and zinc ores. Min. Metall. Process. 3, 158-163.
- MARION, C., JORDENS, A., LI, R.H., RUDOLPH, M., WATERS, K.E., 2017. An evaluation of hydroxamate collectors for malachite flotation. Sep. Purif. Technol. 183, 258-269.
- PARK, K., PARK, S., CHOI, J., KIM, G., TONG, M., KIM, H., 2016. Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector. Sep. Purif. Technol. 168, 1-7.
- PERDEW, J.P., BURKE, K., ERNZERHOF, M., 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865-3868.
- PERDEW, J.P., CHEVARY, J.A., VOSKO, S.H., JACKSON, K.A., PEDERSON, M.R., SINGH, D.J., FIOLHAIS, C., 1992. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 46, 6671-6687.
- PERDEW, J.P., WANG, Y., 1992. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 45, 13244-13249.
- PERDEW, J.P., YUE, W., 1986. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B. 33(12), 8800-8802.
- SHEN, P.L., LIU, D.W., ZHANG, X.L., JIA, X.D., SONG, K.W., LIU, D., 2019. Effect of (NH4)2SO4 on eliminating the depression of excess sulfide ions in the sulfidization flotation of malachite. Min. Eng. 137, 43-52.
- WU, D.D., MAO, Y.B., DENG, J.S., WEN, S.M., 2017. Activation mechanism of ammonium ions on sulfidation of malachite (–201) surface by DFT study. Appl. Surf. Sci. 410, 126-133.
- YIN, W.Z., SUN, Q.Y., LI, D., TANG, Y., FU, Y.F., YAO, J., 2019. Mechanism and application on sulphidizing flotation of copper oxide with combined collectors. T. Nonferr. Metal. Soc. 29, 178-185.
- ZHOU, R., CHANDER, S., 1993. Kinetics of sulfidization of malachite in hydrosulfide and tetrasulfide solutions. Int. J. Miner. Process. 37, 257-272.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff2dd9bf-20c8-41fb-ad2c-b9a9ceb5e896