PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geometry Characterization of AISI 430 Stainless Steel Microstructuring Using Laser

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Laser-generated surface patterns provide the means for local mechanical interlocking between the joined materials, tunes the wettability of surfaces that come in contact, and generally are the main factor for bonding strength enhancement, especially between dissimilar materials. This paper presents the influence of different patterning overlays generated with a pulsed laser on the surface of stainless-steel sheets. For all experiments, an overlapping degree of 90% has been chosen between three different patterns, while the engraving speed, pulse frequency and number of passes have varied. The textured surfaces’ morphology was assessed through optical microscopy, and the roughness of the surfaces was correlated with the corresponding experimental parameters. The results have indicated promising insights for joining stainless steel to plastic materials, which is otherwise difficult to assess through usual welding techniques.
Twórcy
  • Transilvania University of Brasov, Brasov, Romania
  • BSH Electrodomésticos España S.A., Zaragoza, Spain
  • Universidad Politecnica de Madrid, Madrid, Spain
  • Transilvania University of Brasov, Brasov, Romania
  • Transilvania University of Brasov, Brasov, Romania
  • Transilvania University of Brasov, Brasov, Romania
  • Transilvania University of Brasov, Brasov, Romania
  • Transilvania University of Brasov, Brasov, Romania
Bibliografia
  • [1] K. Shimamoto, Y. Sekiguchi, C. Sato, Int. J. Adhes. Adhes. 67, 31-37 (2016).
  • [2] K. Vand der Straeten, I. Burkhardt, A. Olowinsky, A. Gillner, Physcs. Proc. 83, 1137-1144 (2016).
  • [3] R.A. Delgado-Ruız, J.L. Calvo-Guirado, P. Moreno, J. Guardia, G. Gomez-Moreno, J.E. Mate-Sanchez, P. Ramirez-Fernandez, F. Chiva, J. Biomed. Mater. Res. B Appl. Biomater. 96 (1), 91-100 (2011).
  • [4] W. Liu, S. Liu, L. Wang, Coatings 9 (4), 249 (2019).
  • [5] M. de la Cruz Lorenzo, M. Portillo, A. Albaladejo, Photon Lasers Med. 1 (3), 171-182 (2012).
  • [6] G. Hu, K. Guan, L. Lu, J. Zhang, N. Lu, Y. Guan, Engineering 4(6), 822-830 (2018).
  • [7] A. Carvalho, L. Grenho, M.H. Fernandes, A. Daskalova, A. Trifonov, I. Buchvarov, F.J. Monteiro, Ceram. Int. 46 (2), 1383-1389 (2020).
  • [8] R. Ortiz, I. Aurrekoetxea-Rodríguez, M. Rommel, I. Quintana, M. dM Vivanco, J.L. Toca-Herrera, Polymers 10 (12), 1337 (2018).
  • [9] N. Sirdeshmukh, G. Dongre, Mater. Today-Proc. 44, 2348-2355 (2021).
  • [10] A.T.T. Nguyen, M. Brandt, A.C. Orifici, S. Feih, Int. J. Adhes. Adhes. 66, 81-92 (2016).
  • [11] E. Rodriguez-Vidal, C. Sanz, J. Lambarri, J. Renard, V. Gantchenko, Physcs. Proc. 83, 1110-1117 (2016).
  • [12] G. Dumitru, V. Romano, H.P. Weber, H. Haefke, Y. Gerbig, E. Pflüger, Appl. Phys. A 70, 485-487 (2000).
  • [13] M. Adjim, R. Pillai, A. Bensaoula, D. Starikov, C. Boney, A. Saidane, J. Heat Transfer. 129 (7), 798-804 (2007).
  • [14] M.R. Cardoso, V. Tribuzi, D.T. Balogh, L. Misoguti, C.R. Mendonc, Appl. Surf. Sci. 257, 3281-3284 (2011).
  • [15] S. Itapu, D.G. Georgiev, V. Devabhaktuni, J. Electromagnet. Wave, 29 (12), 1547-1556 (2015).
  • [16] J.E. Carey, PhD Thesis, Femtosecond-Laser Microstructuring of Silicon for Novel Optoelectronic Devices, Harvard University, Cambridge, Massachusetts, USA (2004).
  • [17] C. Samoila, D. Ursutiu, A. Tavkhelidze, L. Jangidze, Z. Taliashvili, G. Skhiladze, M. Tierean, Nanotechnology 31 (3), 035301 (2020).
  • [18] A. Guarnaccio, C. Belviso, P. Montano, F. Toschi, Sx. Orlando, G. Ciaccio, S. Ferreri, D. Trevisan, D. Mollica, G.P. Parisi, P. Dolce, A. Bellucci, A. De Stefanis, D.M. Trucchi, V. Valentini, A. Santagata, F. Cavalcante, A. Lettino, L. Medici, P.P. Ragone, V.G. Lambertini, Surf. Coat. Tech. 406, 126727 (2021).
  • [19] E. Rodriguez-Vidal, C. Sanz, C. Soriano, J. Leunda, G. Verhaeghe, J. Mater. Process. Tech. 229, 668-677 (2016).
  • [20] A. De Zanet, V. Casalegno, M. Salvo, Ceram. Int. 47, 7307-7320 (2021).
  • [21] T. Czotscher, F. Vollertsen, Physcs. Proc. 83, 53-61 (2016).
  • [22] J. Salstela, M. Suvanto, T.T. Pakkanen, Int. J. Adhes. Adhes. 66, 128-137 (2016).
  • [23] S. Rauh, K. Wöbbeking, M. Li, W. Schade, E.G. Hübner, ChemPhysChem 21, 1644-1652 (2020).
  • [24] W. Knapp, D. Djomani, J.F. Coulon, R. Grunchec, Physcs. Proc. 56, 791-800 (2014).
  • [25] R. Matsuzaki, N. Tsukamoto, J. Taniguchi, Int. J. Adhes. Adhes. 68, 124-132 (2016).
  • [26] E. Moldovan, M.H. Tierean, E.M. Stanciu, B. Transilvania Univ. 10 (1) 39-46 (2017).
  • [27] J.P. Bergmann, M. Stambke, Physcs. Proc. 39, 84-91(2012).
  • [28] A. Cenigaonaindia, F. Liébana, A. Lamikiz, Z. Echegoyen, Physcs. Proc. 39, 92-99 (2012).
  • [29] P. Amend, S. Pfindel, M. Schmidt, Physcs. Proc. 41, 98-105 (2013).
  • [30] X. Wang, P. Li, Z. Xu, X. Song, H. Liu, J. Mater. Process. Tech. 210, 1767-1771 (2010).
  • [31] A. Roesner, S. Scheik, A. Olowinsky, A. Gillner, U. Reisgen, M. Schleser, Physcs. Proc. 12, 370-377 (2011).
  • [32] F.L. Palmieri, M.A. Belcher, C.J. Wohl, K.Y. Blohowiak, J.W. Connell, Int. J. Adhes. Adhes. 68, 95-101 (2016).
  • [33] E. Rodriguez-Vidal, J. Lambarri, C. Soriano, C. Sanz, G. Verhaeghe, Physcs. Proc. 56, 835-844 (2014).
  • [34] K. Schricker, M. Stambke, J.P. Bergmann, K. Bräutigam, P. Henckell, Physcs. Proc. 56, 782-790 (2014).
  • [35] A.V. Brover, L.D. D’yachenko, Met. Sci. Heat Treat. 51 (5-6), 292-296 (2009).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff2b764f-6889-43e5-9d36-54e63477b8af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.