PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cathodoluminescence of synthetic zircon implanted by He+ ion

Identyfikatory
Warianty tytułu
Konferencja
Conference Proceedings of the 4th Asia Pacific Luminescence and Electron Spin Resonance Dating Conference Nov 23rd-25th, 2015, Adelaide, Australia.
Języki publikacji
EN
Abstrakty
EN
He+ ion implantation at 4.0 MeV, equivalent to energy of α particles from natural radioactive nuclei 238U and 232Th, has been conducted for undoped synthetic zircon. The cathodoluminescence (CL) of implanted samples was measured to clarify the radiation-induced effects. Unimplanted synthetic zircon shows pronounced and multiple blue emission bands between 310 nm and 380 nm, whereas the implanted samples have an intense yellow band at ~550 nm. The blue emission bands can be assigned to intrinsic defect centers formed during crystal growth. The yellow band should be derived from induced-defect centers by He+ ion implantation, which might be related to the metamicitization originated from a self-induced radiation in natural zircon. The yellow band may be separated into two emission components at 1.96 eV and 2.16 eV. The emission component at 2.16 eV is recognized in both unimplanted and implanted samples, and its intensity increases with an increase in the implantation dose. The CL of zircon can be used as the geodosimeter.
Wydawca
Czasopismo
Rocznik
Strony
129--135
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • Department of Biosphere-Geosphere Science, Okayama University of Science, Okayama, 700-0005 Japan
autor
  • Department of Earth and Planetary Material Sciences, Tohoku University, Sendai, 980-8578 Japan
autor
  • Department of Biosphere-Geosphere Science, Okayama University of Science, Okayama, 700-0005 Japan
autor
  • Department of Biosphere-Geosphere Science, Okayama University of Science, Okayama, 700-0005 Japan
Bibliografia
  • 1. Blanc P, Baumer A, Cesbron F, Ohnenstetter D, Panczer G and Remond G, 2000. Systematic cathodoluminescence spectral analysis of synthetic doped minerals: Anhydrite, apatite, calcite, fluorite, scheelite and zircon. In Cathodoluminescence in Geosciences, Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (Eds.), pp. 127–160. Berlin, Heidelberg, New York: Springer.
  • 2. Cesbron F, Blance P, Ohnenstetter D and Rémond G, 1995. Cathodoluminescence of rare earth doped zircons. I. Their possible use as reference materials. Scanning Microscopy Supplement 9: 35–56.
  • 3. Ewing RC, Meldrum A, Wang LM, Weber WJ and Corrales LR, 2003. Radiation Effects in Zircon (Hanchar, J.M. and Hoskin, P.W.O. Eds.). pp. 500, Reviews in Mineralogy and geochemistry, 53, Mineralogical Society of America, Washington, D.C., 387–425.
  • 4. Finch AA, Garcia-Guinea J, Hole DE, Townsend PD and Hanchar JM, 2004. Ionoluminescence of zircon: rare earth emissions and radiation damage. Journal of Physics D: Applied Physics 37: 2795–2803, DOI 10.1088/0022-3727/37/20/004.
  • 5. Gaft M, Reisfeld R, Panczer G, Blank P and Boulon G, 1998. Laser-induced time-resolved luminescence of minerals. Spectrochim Acta Part A 54: 2163–2175, DOI 10.1016/S1386-1425(98)00134-6.
  • 6. Gaft M, Reisfeld R and Panczer G, 2005. Luminescence Spectroscopy of Minerals and Materials. pp. 356, Springer-Verlag, Berlin.
  • 7. Gaft M, Shinno I, Panczer G and Reisfeld R, 2002. Laser-induced time-resolved spectroscopy of visible broad luminescence bands in zircon. Mineralogy and Petrology 76: 235–246, DOI 10.1007/s007100200043.
  • 8. Götze J, Kempe U, Habermann D, Nasdala L, Neuser RD and Richer DK, 1999. High-resolution cathodoluminescence combined with SHRIMP ion probe measurements of detrital zircon. Mineralogical Magazine 63: 179–187, DOI 10.1180/002646199548411.
  • 9. Götze J, Plötze M and Habermann D, 2001. Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz – a review. Mineralogy and Petrology 71: 225–250, DOI 10.1007/s007100170040.
  • 10. Götze J, Pan Y, Stevens-Kalceff M, Kempe U and Müller A, 2015. Origin and significance of the yellow cathodoluminescence (CL) of quartz. American Mineralogist 100: 1469–1482.
  • 11. Hanchar JM, Finch RJ, Hoskin PWO, Watoson EB, Cherniak DJ and Mariano AN, 2001. Rare earth elements in synthetic zircon: Part 1. Synthesis and rare earth element and phosphorus doping. American Mineralogist 86: 667–680.
  • 12. Hazen RM and Finger LW, 1979. Crystal structure and compressibility of zircon at high pressure. American Mineralogist 64: 196–201.
  • 13. Kayama M, Nakano S and Nishido H, 2010. Characteristics of emission centers in alkali feldspar: A new approach by using cathodoluminescence spectral deconvolution. American Mineralogist 95: 1783–1795, DOI 10.2138/am.2010.3427.
  • 14. Kayama M, Nishido H, Toyoda S, Komuro K and Ninagawa K, 2011. Radiation effects on cathodoluminescence of albite. American Mineralogist 96: 1238–1247, DOI 10.2138/am.2011.3780.
  • 15. Kayama M, Nishido H, Toyoda S, Komuro K, Finch AA, Lee MR and Ninagawa K, 2014. Cathodoluminescence of alkali feldspars and radiation effects on the luminescent properties. American Mineralogist 99: 65–75, DOI 10.2138/am.2014.4361.
  • 16. King GE, Finch AA, Robinson RAJ and Hole DE, 2011. The problem of dating quartz 1: Spectroscopic ionoluminescence of dose dependence. Radiation Measurements 46: 1–9, DOI 10.1016/j.radmeas.2010.07.031.
  • 17. Krbetscheck MR, Götze J, Dietrich A and Trautmann T, 1998. Spectral information from minerals relevant for luminescence dating. Radiation Measurements 27: 695–748, DOI 10.1016/S1350-4487(97)00223-0.
  • 18. Lian J, Ríos S, Boatner LA, Wang LM and Ewing RC, 2003. Micro-structural evolution and nanocrystal formation in Pb+-implanted ZrSiO4 single crsytals. Journal of Applied Physics 94: 5695–5703, DOI 10.1063/1.1618917.
  • 19. Marshall DJ, 1988. Cathodoluminescence of Geological Materials, pp. 146, Hyman, Boston.
  • 20. Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK and Seydoux-Guikkaume AM, 2002. Annealing radiation damage and the recovery of cathodoluminescence. Chemical Geology 191: 121–140, DOI 10.1016/S0009-2541(02)00152-3.
  • 21. Nasdala L, Zhang M, Kempe U, Panczer G, Gaft M, Andrut M and Plötze M, 2003. Spectroscopic methods applied to zircon. In Zircon (Hanchar, J.M. and Hoskin, P.W.O. Eds.). pp. 500, Reviews in Mineralogy and geochemistry, 53, Mineralogical Society of America, Washington, D.C., 427–467.
  • 22. Nasdala L, Gramnbole D, Gotze J, Kempe U and Vaczi Tamas, 2011. Helium irradiation study on zircon. Contributions to Mineralogy and Petrology 161: 777–789, DOI 10.1007/s00410-010-0562-7.
  • 23. Okumura T, Nishido H, Toyoda S, Kaneko T, Kosugi S and Sawada Y, 2008. Evaluation of radiation-damage halos in quartz by cathodoluminescence as a geochronological tool. Quaternary Geochronology 3: 342–345, DOI 10.1016/j.quageo.2008.01.006.
  • 24. Rémond G, Blanc P, Cesbron F, Ohnenstetter D and Rouer O, 1995. Cathodoluminescence of rare earth doped zircons. II. Relationship between the distribution of the doping elements and the contrasts of images. Scanning Microscopy Supplement 9: 57–76.
  • 25. Stevens-Kalceff MA, 2009. Cathodoluminescence microcharacterization of point defect in α-quartz. Mineralogical Magazine 73: 585–605, DOI 10.1180/minmag.2009.073.4.585.
  • 26. Tsuchiya Y, Kayama M, Nishido H and Noumi Y, 2014. Electron irradiation effects on Cathodoluminescence in zircon. Journal of Mineralogical and Petrological Sciences 109: 18–22, DOI 10.2465/jmps.130621c.
  • 27. Tsuchiya Y, Kayama M, Nishido H and Noumi Y, 2015. Annealing effects on Cathodoluminescence of zircon. Journal of Mineralogical and Petrological Sciences 110(6): 283–292, DOI 10.2465/jmps.150430.
  • 28. Weber WJ, 1981. Ingrowth of lattice defects in alpha irradiated UO2 single crystals. Journal of Nuclear Materials 98: 206–215, DOI 10.1016/0022-3115(81)90400-1.
  • 29. Weber WJ, Ewing RC and Wang LM, 1994. The radiation-induced crystalline-to-amorphous transition in zircon. Journal of Materials Research 9: 688–698, DOI 10.1557/JMR.1994.0688.
  • 30. Yacobi B and Holt D, 1990. Cathodoluminescence microscopy of inorganic solids. Plenum Press, New York, pp. 308.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff2b52f9-e59b-4f9f-be05-9d9c15aa0113
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.