Transformer diagnostic

Introduction

Dissolved gas-in-oil analysis (DGA) is a sensitive and reliable technique for the detection of incipient fault condition within oil-immersed transformers. The presence of certain key gases is monitored and quantified.

There are a number of methods developed for analyzing these gases and interpreting their significance: Key Gas, Rogers Ratio, Doernenburg, Logarithmic Nomograph, IEC Ratio, Basic gas ratios and Duval Triangle. This case investigates the accuracy and consistency of these methods in interpreting the transformer condition. Also The mechanical properties of insulating paper can be established by direct measurement of its tensile strength or degree of polymerization (DP). These properties are used to evaluate the end of reliable life of paper insulation. It is generally suggested that DP values of below 200 represent the lower limits for end–of–life criteria for paper insulation; for values < 150, the paper is without mechanical strength.

Analysis of paper insulation for its DP value requires removal of a few strips of paper from suspect sites. This procedure can conveniently be carried out during transformer repairs. The results of these tests will be a deciding factor in rebuilding or scrapping a transformer. Direct measurement of these properties is not practical for in-service transformers. However, it has been shown that the amount of 2-furaldehyde in oil (usually the most prominent component of paper decomposition) is directly related to the DP of the paper inside the transformer.

Paper in a transformer does not age uniformly and variations are expected with temperature, moisture distribution, oxygen levels and other operating conditions. The levels of 2-furaldehyde in oil relate to the average deterioration of the insulating paper. Consequently, the extent of paper deterioration resulting from a hot spot will be greater than indicated by levels of 2-furaldehyde in the oil. For typical power transformer, The evaluation is carried out on DGA and furan data obtained from three different groups of transformers each group are identical in Abu-Sultan steam power plant.

6.2.1 Dissolved gas analysis to diagnose transformer faults

When thermal or electrical stresses, which affect the insulating oil and cellulose material in transformers, are higher than the normal permissible value, then certain combustible gases, referred as fault gases, started to be produced inside the transformer. The most significant fault gases produced by oil decomposition are H_2 (Hydrogen), C_2H_6 (Ethane), C_2H_4 (Ethylene) and C_2H_2 (Acetylene) as well as Carbon monoxide (CO) and carbon dioxide (CO₂) which produce from decomposition of insulated paper (Cellulose).

-					- <u> </u>						sed by a Madab program	
T.C.G) without C3H6 & C3H8	Hydrogen							Carbon Oxides Non-fault or atmospheric gases		or pheric	Diagnoses	
Г.С.G СЗН6 .			Comb	ustible	e gases	5		Non-Co	mbustibl	e gases		
L)	H2	CH4	C2H2	C2H4	С2Н6	C3H6 & C3H8	СО	CO2	02	N2		
	IEEI	E C57.	.104- I	D11d	Kay	gas %	6 bas	sed on	total			
	combustible gases without C3H6 & C3H8 ≥											
	4%	16%		62%	18%						pyrolysis in oil	
							90%				pyrolysis of cellulose	
	86%	12%									corona in oil	
	60%	5%	30%	3%	2%						arcing in oil	
IE	C 6059	9-2007	7 Gas l	imits a	nd ger	neratio	n rate	ppm p	er mo	nth		
	L≥ 150	L≥ 130	L≥ 20	L≥ 280	L≥ 90		L≥ 600	L≥ 14000			fault can be present	
	g ≥ 11.25	g ≥ 10.00	g ≥ 0.330	g ≥ 12.10	g ≥ 7.500		g ≥ 88.30	g ≥ 833.3			fault can be present	
	I	EEE (4-2008	8 gas o	concen	tratio	n limi	ts	1		
L ≤ 720	L ≤ 100	L ≤ 120	L ≤ 35	L ≤ 50	L ≤ 56		L ≤ 350	L ≤ 2500			transformer normal	
L > 720	L > 100	L > 120	L > 35	L > 50	L > 56		L > 350	L > 2500			fault can be present	
L ≤	L ≤	L ≤	L ≤	L ≤	L ≤		530 L ≤ 570	L ≤ 4000				
1920 L >	700 L >	400 L >	50 L >	100 L >	100 L >		570 L >	4000 L >			high decomposition cellulose and/or oil	
1920	700	400	50	100	100		570	4000			ingli decomposition centrose una/or on	
L ≤ 4630	L ≤ 1800	L ≤ 1000	L ≤ 80	L ≤ 200	L ≤ 150		L ≤ 1400	L ≤ 10000				
L > 4630	L > 1800	L > 1000	L > 80	L > 200	L > 150		L > 1400	L > 10000			excessive decomposition cellulose and/or oil	
						its and		ration	rate	11		
	L≥	L≥	L≥	L≥	L≥		L≥	L≥			fault can be present	
	100 g ≥	75 g ≥	$\begin{array}{c} 35\\ g \geq \\ 3 \end{array}$	75 g ≥	75 g ≥		700 g ≥	7000 g ≥			-	
	50	38	3	38	38		350	3500				

Table 1 Summary of some diagnostic methods used by a Matlab program

facilitate of fault gases, such as Key gases method, Gas limits and generation rate gas concentration limits, these methods are shown in table (1) also Dornenberg method, Roger's ratio method, Basic gas ratios method, C02/CO method, O2/N2 method, and C2H2/H2 method, are shown in table (2) to automate the diagnoses by Matlab program.

6.2.2 Modification of Duval triangle (DGA) diagnostic graph to numerical method

This tool was developed in this thesis only to make the Modification of Duval triangle DGA diagnostic graph to numerical method to be more easy to use and to automate Duval triangle DGA diagnoses by a Matlab program. For example if C2H2 % = 10 % = 0.1, CH4 % = 30 % = 0.3 and C2H4 % = 60% = 0.6 we can use table (3) easy to determine

R1 R2 R3 R4 R5 R6 CR44H2 C2H2/CH4 C2H4/C2H2 C2H4/C2H6 C2H4/C2H6 C2H4/C2H6 Diagnoses IEC 60.10 .10 .10 .10 discharge of low energy .11 .10 <td< th=""><th></th><th>10010 (_) 5</th><th></th><th></th><th>Ŭ</th><th></th><th></th></td<>		10010 (_) 5			Ŭ		
IEC 60599-2007 Basic gas ratios Partial discharges 0.1-0 >1.0 0.1-1 0.6-2.5 >2.0 discharge of low energy 0.1-1 0.6-2.5 >2.0 discharge of low energy . . 0.0°C 1.0 c0.1 1.0-4.0 thermal fault 500°C < t < 700°C	R1	R2	R3	R4	R5	R6	
0.1 0.2 partial discharge flow energy $0.1.45$ >1.0discharge of low energy $0.1.1$ $0.6.25$ >2.0discharge of low energy 1.0 $0.1.1$ $0.6.25$ >2.0 1.0 0.1 $1.0.4.0$ thermal fault of < 300°C	CH4/H2					C2H6/CH4	Diagnoses
0.1 0.2 partial discharge flow energy $0.1.45$ >1.0discharge of low energy $0.1.1$ $0.6.25$ >2.0discharge of low energy 1.0 $0.1.1$ $0.6.25$ >2.0 1.0 0.1 $1.0.4.0$ thermal fault of < 300°C		IEC	60599-2007	7 Basic gas 1	atios		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<0.1	-					partial discharges
<th< td=""><td>0.1-0.5</td><td>>1.0</td><td></td><td></td><td>>1.0</td><td></td><td></td></th<>	0.1-0.5	>1.0			>1.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1-1	0.6-2.5			>2.0		
>1.0<0.2>4.0thermal fault t > 700°CIEC 60599-1999 Basic gas ratios0.1-1<0.1	-	-					
IEC 60599-1999 Basic gas ratios0.1-1<0.1							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	>1.0						thermal fault t > 700° C
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IEC	60599-1999	9 Basic gas 1	atios		
$\langle 0.1$ $\langle 0.1-1$ $\langle -1.0$ density energy density $\langle 0.1-1$ $\rangle 0.1$ $\rangle 1.0$ $\langle -1.0$ $\langle -1.0$ $\langle -1.0$ $\langle 0.1-1$ $\langle 0.1-1$ $\langle -1.0$ $\langle -1.0$ $\langle -1.0$ $\langle -1.0$ $\langle 0.1-1$ $\langle -1.1$ $\langle -1.0$ <td>0.1-1</td> <td><0.1</td> <td></td> <td></td> <td><1.0</td> <td></td> <td></td>	0.1-1	<0.1			<1.0		
0.1-1>0.1>1.0energy density discharge of low energy continuous sparking0.1-10.1-1>3.0discharge of low energy continuous sparking0.1-10.1-11.01.0discharge of low energy arc with power flow through0.1-1<0.1	<0.1	<0.1			<1.0		density
0.1-1 0.1-1 >3.0 continuous sparking 0.1-1 0.1-1 >3.0 discharge of high energy arc with power flow through 0.1-1 <0.1	<0.1	0.1-1			<1.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1-1	>0.1			>1.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1-1	0.1-1			>3.0		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1-1	<0.1			1.0-3.0		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	>1.0	<0.1			<1.0		
Numtemperature range 300-700°C>1.0<0.1							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	>1.0	<0.1			1.0-3.0		
> 700°CIEEE C57.104- D11d Doernenburg ratios>1.0<0.75	. 1.0	.0.1			. 2.0		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	>1.0						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			57.104- D110	d Doernenbu	urg ratios		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<0.1	insignificant	<0.3	>0.4			
IEEE C57.104-D11d Rogers ratios>0.1 <1.0<0.5<1.0<1.0normal ≤ 0.1 <0.5	1 1 .						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	>0.1 <1.0						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IEEE	C57.104-D1	11d Rogers	ratios		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	>0.1 <1.0	<0.5			<1.0	<1.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\geq 1.0 \leq 3.0$	<0.5			≥ 3.0	<1.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	>01 <10	>05 <30			~1.0	~1.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2011 11.0	_ 0.0			- 0.0	~1.0	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	≤ 0.1	≥ 0.5			<1.0	<1.0	partial discharge with tracking
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	IF	C 60599.200	7 Singler	ratio	02/N2	С2H2/H2	
$ \begin{array}{ c c c c c c } \hline & & \leq 0.3 & & excessive consumption of oxygen, \\ \hline & & & oil oxidation, paper ageing & \\ \hline & & & \geq 2.0 & & may be main tank contamination by \\ \hline & & \leq 3.0 & & 0.L.T.C compartment & \\ \hline \end{array} $							may be seal leaks
oil oxidation, paper ageing ≥ 2.0 may be main tank contamination by ≤ 3.0 O.L.T.C compartment							-
$ \begin{array}{ c c c c c } & \geq 2.0 & \text{may be main tank contamination by} \\ & \leq 3.0 & \text{O.L.T.C compartment} \end{array} $							
≤ 3.0 O.L.T.C compartment						≥ 2.0	
IEC 60599-2007 and IEEE C57.104- D11d CO2/CO							
	IE	C 60599-200	7 and IEEE	E C57.104- D	11d	CO2/CO	

Table (2) summary of some other diagnostic methods used by a Matlab program

Single ratio		
	≥ 3.0	Normal
	≤ 11.0	
	< 3.0	<pre>paper degradation, Carbonization, t>200°C</pre>
	> 11.0	<pre>may be seal leaks or/and oil oxidation, t<150°C</pre>

Table (3) Modification of Duval triangle (DGA) diagnostic
graph to numerical method

C2H2%	CH4%	C2H4%	Fault					
0.00 - 0.02	0.98 - 1.00	0.00 - 0.02	Partial discharge (electrical fault)					
0.00 - 0.04	0.46 - 0.80	0.20 - 0.50	Thermal fault $300 < t < 700 \ ^{\circ}C$					
0.00 - 0.04	0.76 - 0.98	0.02 - 0.20	thermal fault $t < 300 ^{\circ}\text{C}$					
0.00 - 0.15	0.00 - 0.50	0.50 - 1.00	Thermal fault $t > 700 ^{\circ}\mathrm{C}$					
0.04 - 0.13	0.47 - 0.96	0.00 - 0.40						
0.13 - 0.29	0.21 - 0.56	0.40 - 0.50	Mixtures of thermal and electrical faults					
0.15 - 0.29	0.00 - 0.35	0.50 - 0.85						
0.13 - 0.29	0.31 - 0.64	0.23 - 0.40	Discharge of high energy (electrical fault)					
0.29 - 0.77	0.00 - 0.48	0.23 - 0.71	Discharge of high energy (electrical fault)					
0.13 - 1.00	0.00 - 0.87	0.00 - 0.23	Discharge of low energy (electrical fault)					

the fault Diagnostic (Thermal fault t > 700°C i.e T3). Another practical examples in our case study, the recent increases of gases for TR2 (37-15 = 22 ppm) of CH4, (12 - 1 = 11 ppm) of C2H4, and (0 - 0 = 0 ppm) of C2H2 from 08/05/2013 to 05/1/2014 i.e (11/33 = 0.333333) CH4, (22/33 = 0.6666666) C2H4, and (0/33= 0) C2H2 when we use this method we get from table (6-5) this transformer has (Thermal fault t > 700 °C).

Also the recent increases of gases, for TR4 (61-19 = 42 ppm) of CH4, (6 - 5 = 1 ppm) of C2H4, and (0 - 0 = 0 ppm) of C2H2 from 07/04/2013 to 27/11/2013 i.e (42/43 = 0.9767441) CH4, (1/43 = 0.0232558) C2H4, and (0/43 = 0) C2H2 when we use this method we get from (table 6-5) this Transformer has (Thermal fault t < 300 °C).

Also the recent increases of gases for TR6 (12 - 3 = 9 ppm) of CH4, (3 - 2 = 1 ppm) of C2H4, and (0 - 0 = 0 ppm) of C2H2 from 07/04/2013 to 02/04/2014 i.e (9/10 = 0.9) CH4, (1/10 = 0.1) C2H4, and (0/10=0) C2H2 when we use this method we get from table (3) this transformer has (Thermal fault t < 300 °C).

6.4 Result of diagnostic methods used by a Matlab program

The diagnostic methods for dissolved gas-in-oil analysis and furan are used by a matlab program as shown in the following flow chart Fig. (1). The Matlab program Diagnoses output as shown Fig. (2, 3, 4, 5, 6, 7) for the under evaluation transformers and table (4) shows Summary of the faults diagnosed by various methods which indicate that all transformers are thermal faults.

If % correct diagnoses for method number one is p(A1) and % wrong diagnoses for method number one is p(B1) and % unresolved diagnoses for method number one is p(C1) also If % correct diagnoses for method number two is p(A2) and % wrong diagnoses for method number two is p(B2) and % unresolved diagnoses for method number two is p(C2) and so on then the probability that TR1thermal fault is correct diagnoses is p(A1 U A2 U A3 U A4 U A5) = 99.94 %, for all methods of TR1.

And the probability that TR2 thermal fault is correct diagnoses is p (A1 U A2 U A3 U A4 U A5) = 99.94 %, for all methods of TR2.

And the probability that TR3 thermal fault is correct diagnoses is p (A1 U A2 U A4 U A5) = 99.80 %, for all methods of TR3.

And the probability that TR4 thermal fault is correct diagnoses is p (A1 U A2 U A3 U A4 U A5)= 99.94 %, for all methods of TR4.

And the probability that TR5 thermal fault is correct diagnoses is p (A1 U A2 U A3 U A4 U A5) = 99.85 %, for all methods of TR5.

And the probability that TR6 thermal fault is correct diagnoses is p (A1 U A4 U A5)= 99.12 %, for all methods of TR6.

The fault gases ratios and rate for under evaluation transformers also degree of polymerization are shown in table (5).

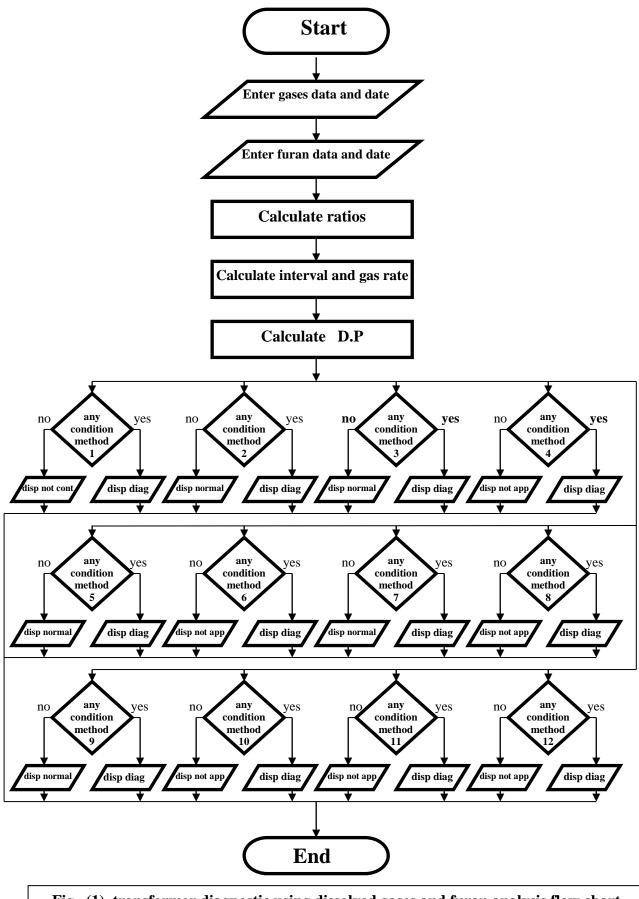


Fig. (1) transformer diagnostic using dissolved gases and furan analysis flow chart

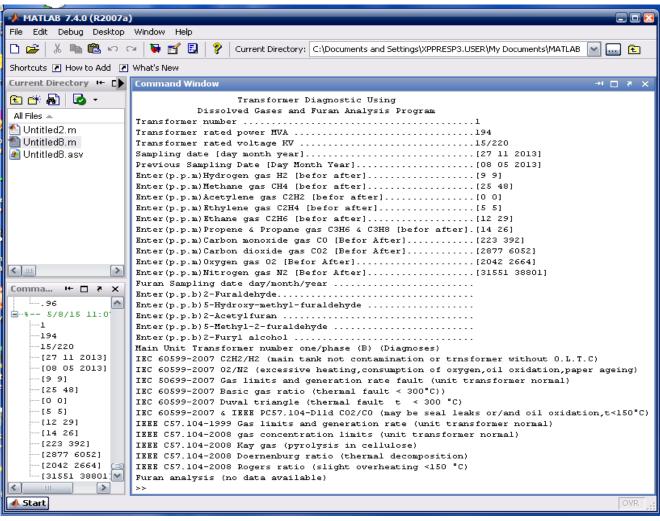


Fig. (2) transformer number one/phase (B) diagnoses

Main Unit Transformer number one/phase (B) (Diagnoses)

IEC 60599-2007 C2H2/H2 (main tank not contamination or transformer without O.L.T.C) IEC 60599-2007 O2/N2 (excessive heating, consumption of oxygen, oil oxidation, paper ageing) IEC 50699-2007 Gas limits and generation rate fault (unit transformer normal) IEC 60599-2007 Basic gas ratio (thermal fault < 300°C)) IEC 60599-2007 Duval triangle (thermal fault < 300°C) IEC 60599-2007 & IEEE PC57.104-D11d CO2/CO (may be seal leaks or/and oil oxidation, t<150°C) IEEE C57.104-1999 Gas limits and generation rate (unit transformer normal) IEEE C57.104-2008 gas concentration limits (unit transformer normal) IEEE C57.104-2008 Kay gas (pyrolysis in cellulose) IEEE C57.104-2008 Doernenburg ratio (thermal decomposition) IEEE C57.104-2008 Rogers ratio (slight overheating <150 °C) Furan analysis (no data available) $\mathbf{g} = \mathbf{0}$ 3.5 0 0 2.6 1.8 25.5 93.8 1093 (ppm/month) 478.6 r = 5.3333 0 0.1724 0 Inf 0.6042

s = 0 15.4388 0.0687

t = 6.63 (month)

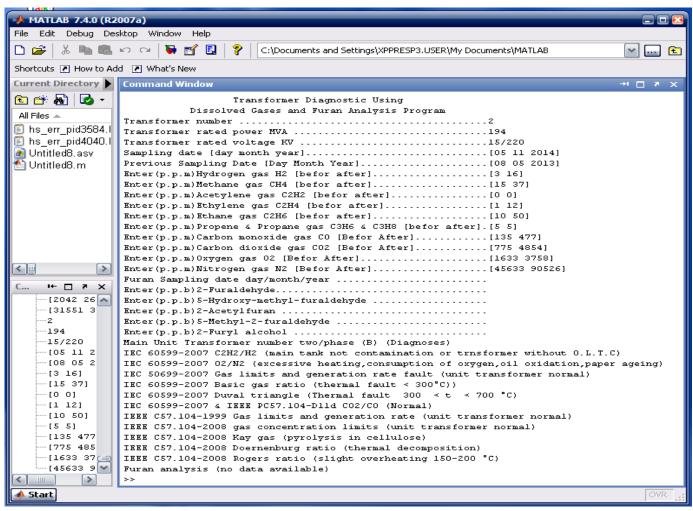


Fig. (3) transformer number two/phase (B) diagnoses)

Main Unit Transformer number two/phase (B) (Diagnoses)

IEC 60599-2007 C2H2/H2 (main tank not contamination or transformer without O.L.T.C) IEC 60599-2007 O2/N2 (excessive heating , consumption of oxygen, oil oxidation, paper ageing) IEC 50699-2007 Gas limits and generation rate fault (unit transformer normal) IEC 60599-2007 Basic gas ratio (thermal fault < 300°C)) IEC 60599-2007 Duval triangle (Thermal fault 300 < t < 700 °C) IEC 60599-2007 & IEEE PC57.104-D11d CO2/CO (Normal) IEEE C57.104-1999 Gas limits and generation rate (unit transformer normal) IEEE C57.104-2008 gas concentration limits (unit transformer normal) IEEE C57.104-2008 Kay gas (pyrolysis in cellulose) IEEE C57.104-2008 Rogers ratio (slight overheating 150-200 °C) Furan analysis (no data available)

$\mathbf{g} = 0.7$	1.2	0	0.6	2.2	0	19.1	227.9	118.7	2508	(ppm/month)
--------------------	-----	---	-----	-----	---	------	-------	-------	------	-------------

 $r = 2.3125 \ 0 \ 0 \ Inf \ 0.2400 \ 1.3514$

s = 0 10.1761 0.0415

 $t = 17.9000 \pmod{1000}$

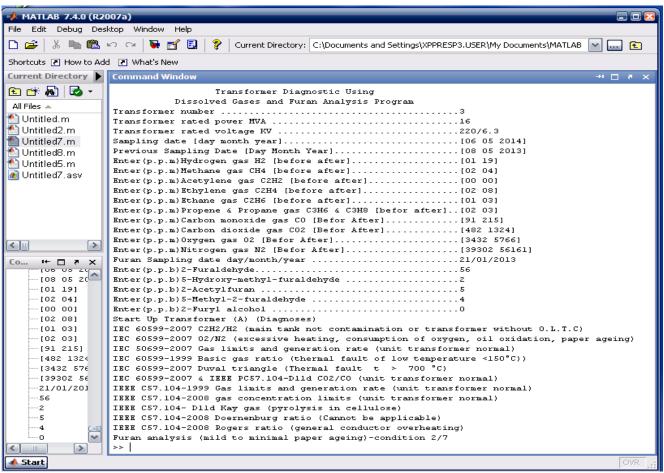


Fig. (4) Start Up transformer (A) Diagnoses

Start Up Transformer (A) (Diagnoses)

IEC 60599-2007 C2H2/H2 (main tank not contamination or transformer without O.L.T.C) IEC 60599-2007 O2/N2 (excessive heating, consumption of oxygen, oil oxidation, paper ageing) IEC 50699-2007 Gas limits and generation rate (unit transformer normal) IEC 60599-1999 Basic gas ratio (thermal fault of low temperature <150°C)) IEC 60599-2007 Duval triangle (Thermal fault t > 700 °C) IEC 60599-2007 & IEEE PC57.104-D11d CO2/CO (unit transformer normal) IEEE C57.104-1999 Gas limits and generation rate (unit transformer normal) IEEE C57.104-2008 gas concentration limits (unit transformer normal) IEEE C57.104-D11d Kay gas (pyrolysis in cellulose) IEEE C57.104-2008 Doernenburg ratio (Cannot be applicable) IEEE C57.104-2008 Rogers ratio (general conductor overheating) Furan analysis (mild to minimal paper ageing)-condition 2/7

g = 1.5	0.2	0	0.5	0.2	0.1	10.4	70.6	195.6	1412.8 (ppm/month)	

r = 0.2105	5 0	0	Inf	2.6667	0.7500
------------	-----	---	-----	--------	--------

s = 0 6.1581 0.1027

t = 11.9333 (month)

DP = 630.6766

File Edit Debug Desktop						
File Eald Debug Desktop						
	🐃 📷 🛃 💡 C:\Documents and Settings\XPPRESP3.USER\My Docun 🔛 🔜 🔃					
Shortcuts 🗷 How to Add 🗷	What's New					
Current Directory 🖛 🕞	Command Window → □ ? ×					
🖻 🖆 💀 🗸 🚽	Transformer Diagnostic Using					
All Files 🔺	Dissolved Gases and Furan Analysis Program Transformer number					
	Transformer number					
Untitled.m	Transformer faced power data					
[🎦 Untitled2.m	Sampling date [day month year]					
[11] Untitled7.m	Previous Sampling Date [Day Month Year]					
💽 Untitled8.m	Enter(p.p.m)Hydrogen gas H2 [before after]					
Suntitled5.m	Enter(p.p.m)Methane gas CH4 [before after][19 61]					
	Enter(p.p.m)Acetylene gas C2H2 [before after]					
🛃 Untitled7.asv	Enter(p.p.m)Ethylene gas C2H4 [before after]					
	Enter(p.p.m)Ethane gas (2H6 [before after]					
	Enter(p.p.m)Propene & Propane gas C3H6 & C3H8 [befor after][30 %L]					
	Enter(p.p.m)Carbon monoxide gas CO [Befor After][122 212]					
	Enter(p.p.m)Carbon dioxide gas CO2 [Befor After]					
	Enter(p.p.m)Oxygen gas O2 [Befor After]					
	Furan Sampling date day/month/year					
Furth sampling date day/month/year						
C	Enter(p.p.b)5-Hydroxy-methyl-furaldehyde					
Comma + □ ₹ ×	Enter(p.p.b)2-Acetylfuran					
16	Enter(p.p.b)5-Methyl-2-furaldehyde					
220/6.3	Enter(p.p.b)2-Furyl alcohol0					
[27 11 2013]	Start Up Transformer (B) (Diagnoses)					
[07 04 2013]	IEC 60599-2007 C2H2/H2 (main tank not contamination or transformer without O.L.T.C)					
[05 06]	IEC 60599-2007 02/N2 (excessive heating, consumption of oxygen, oil oxidation, paper ageing)					
[19 61]						
[00 00] [05 06]	ans =					
[57 142]	1					
[30 81]	-					
[132 212]	IEC 50699-2007 Gas limits and generation rate (fault can be present)					
[848 1772]	IEC 60599-2007 Basic gas ratio (thermal fault < 200 °())					
[991 1911]	IEC 60599-2007 Duval triangle (thermal fault t < 300 °C)					
[74493 88856]	IEC 60599-2007 & IEEE PC57.104-Dlld C02/CO (unit transformer normal)					
21/01/2013	IEEE C57.104-1999 Gas limits and generation rate (unit transformer normal)					
	IEEE C57.104-2008 gas concentration limits (unit transformer normal)					
7	IEEE C57.104- Dild May gas (pyrolysis in cellulose)					
1	IEEE C57.104-2008 Doernenburg ratio (thermal decomposition)					
	IEEE C57.104-2008 Rogers ratio (slight overheating 150-200 °C)					
	Furan analysis (mild to minimal paper ageing)-condition 2/7					
	»					
A Start	OVR					

Fig. (5) Start Up transformer (B) diagnoses

Start Up Transformer (B) (Diagnoses)

IEC 60599-2007 C2H2/H2 (main tank not contamination or transformer without O.L.T.C) IEC 60599-2007 O2/N2 (excessive heating, consumption of oxygen, oil oxidation, paper ageing) IEC 50699-2007 Gas limits and generation rate (fault can be present) IEC 60599-2007 Basic gas ratio (thermal fault < 300°C)) IEC 60599-2007 Duval triangle (thermal fault t < 300 $^{\circ}$ C) IEC 60599-2007 & IEEE PC57.104-D11d CO2/CO (unit transformer normal) IEEE C57.104-1999 Gas limits and generation rate (unit transformer normal) IEEE C57.104-2008 gas concentration limits (unit transformer normal) IEEE C57.104- D11d Kay gas (pyrolysis in cellulose) IEEE C57.104-2008 Doernenburg ratio (thermal decomposition) IEEE C57.104-2008 Rogers ratio (slight overheating 150-200 °C) Furan analysis (mild to minimal paper ageing)-condition 2/7 0 120.5 120 1873.4 (ppm/month) g = 0.15.5 0.1 11.1 6.7 10.4

r = 10.1667 0 0 Inf 0.0423 2.3279	r =	10.1667	0	0	Inf	0.0423	2.3279)
--	-----	---------	---	---	-----	--------	--------	---

s = 0 8.3585 0.0215

t = 7.6667 (month)

DP = 631.5920

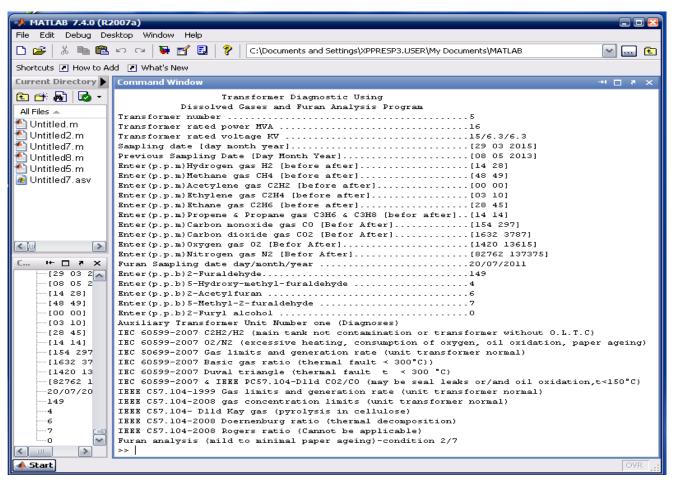


Fig. (6) auxiliary transformer unit number one diagnoses

Auxiliary Transformer Unit Number one (Diagnoses)

IEC 60599-2007 C2H2/H2 (main tank not contamination or transformer without O.L.T.C)

IEC 60599-2007 O2/N2 (excessive heating, consumption of oxygen, oil oxidation, paper ageing)

IEC 50699-2007 Gas limits and generation rate (unit transformer normal)

IEC 60599-2007 Basic gas ratio (thermal fault < 300°C))

IEC 60599-2007 Duval triangle (thermal fault t < 300 °C)

IEC 60599-2007 & IEEE PC57.104-D11d CO2/CO (may be seal leaks or/and oil oxidation,t<150°C)

IEEE C57.104-1999 Gas limits and generation rate (unit transformer normal)

IEEE C57.104-2008 gas concentration limits (unit transformer normal)

IEEE C57.104- D11d Kay gas (pyrolysis in cellulose)

IEEE C57.104-2008 Doernenburg ratio (thermal decomposition)

IEEE C57.104-2008 Rogers ratio (Cannot be applicable)

Furan analysis (mild to minimal paper ageing)-condition 2/7

g	= 0.6	0	0	0.3	0.7	0	6.3	94.9	537.2	2405.9 (ppm/month)
r	= 1.7500	0	0	Inf	0.2222	0.9184				
S	= 0	12.7508	0.0991	l						
t	= 22.7000	(month)								
DP	e = 623.6127	,								

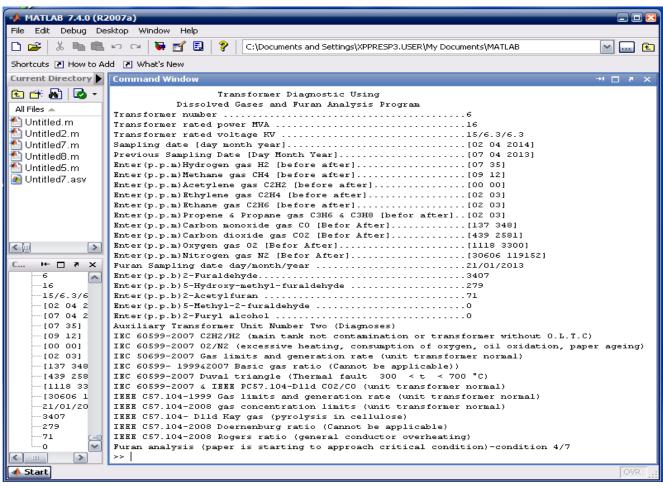


Fig. (7) auxiliary transformer unit number two diagnoses

Auxiliary Transformer Unit Number Two (Diagnoses)

IEC 60599-2007 C2H2/H2 (main tank not contamination or transformer without O.L.T.C) IEC 60599-2007 O2/N2 (excessive heating, consumption of oxygen, oil oxidation, paper ageing) IEC 50699-2007 Gas limits and generation rate (unit transformer normal) IEC 60599- 1999&2007 Basic gas ratio (Cannot be applicable)) IEC 60599-2007 Duval triangle (Thermal fault 300 < t < 700 °C) IEC 60599-2007 & IEEE PC57.104-D11d CO2/CO (unit transformer normal) IEEE C57.104-1999 Gas limits and generation rate (unit transformer normal) IEEE C57.104-2008 gas concentration limits (unit transformer normal) IEEE C57.104- D11d Kay gas (pyrolysis in cellulose) IEEE C57.104-2008 Doernenburg ratio (Cannot be applicable) IEEE C57.104-2008 Rogers ratio (general conductor overheating) Furan analysis (paper is starting to approach critical condition)-condition 4/7 g = 2.40.3 0 0.1 0.1 0.1 17.8 181 184.4 7482.8 (ppm/month)

 $\mathbf{r} = 0.3429 \quad \mathbf{0} \qquad \mathbf{0} \qquad \mathbf{Inf} \quad \mathbf{1.0000} \quad \mathbf{0.2500}$

s = 0 7.4167 0.0277

t = 11.8333 (month)

DP = 409.9619

Table (4) Summary of the fault diagnosed by various methods											
E.		IEC 60	599	IE	EE C57.104						
Transform er no.	Furan analysis	Duval's triangle P(96/4)	Basic gas ratio P(77/8)	Doernenburg ratio P(71/3)	Rogers Ratio P(62/5)	Kay gas P(42/58)					
TR1	no data available	thermal fault t < 300°C	thermal fault t < 300°C	thermal decompositio n	slight overheating t < 150 °C	pyrolysis in cellulose					
TR2	no data available	Thermal fault 300 < t < 700 °C	thermal fault t < 300°C	thermal decompositio n	slight overheating 150-200 °C	pyrolysis in cellulose					
TR3	mild to minimal paper ageing condition 2/7	Thermal fault t > 700 °C	thermal fault of low temperature $t < 150^{\circ}C$	Cannot be applicable	general conductor overheating	pyrolysis in cellulose					
TR4	mild to minimal paper ageing condition 2/7	thermal fault t < 300 °C	thermal fault t < 300°C	thermal decompositio n	slight overheating 150-200 °C	pyrolysis in cellulose					
TR5	mild to minimal paper ageing condition 2/7	Thermal fault t > 700 °C	thermal fault t < 300°C	thermal decompositio n	Cannot be applicable	pyrolysis in cellulose					
TR6	paper is starting to approach critical condition condition 4/7	Thermal fault 300 < t < 700 °C	Cannot be applicable	Cannot be applicable	general conductor overheating	pyrolysis in cellulose					

Table (4) Summary of the fault diagnosed by various methods

Table (5) the fault gases ratios and rate for under evaluation transformers

		0	1				
Ratios and Gases		TR1	TR2	TR3	TR4	TR5	TR6
R1	CH4/H2	5.3333	2.3125	0.2105	10.1667	1.7500	0.3429
R2	C2H2/C2H4	0	0	0	0	0	0
R3	C2H2/CH4	0	0	0	0	0	0
R4	C2H6/C2H2	Inf	∞	Inf	∞	Inf	∞
R5	C2H4/C2H6	0.1724	0.2400	2.6667	0.0423	0.2222	1.0000
R6	C2H6/CH4	0.6042	1.3514	0.7500	2.3279	0.9184	0.2500
Gas generation rate (ppm) / month							
g1	H2/month	0	0.7	1.5	1	0.6	2.4
g2	CH4/month	3.5	1.2	2	5.5	0.0	0.3
g3	C2H2/month	0	0	0	0	0.0	0.0
g4	C2H4/month	0	0.6	5	1	0.3	0.1
g5	C2H6/month	2.6	2.2	2	11.1	0.7	0.1
g6	C3H6&C3H8/month	1.8	0	1	6.7	0.0	0.1
g7	CO/month	25.5	19.1	10.4	10.4	6.3	17.8
g8	CO2/month	478.6	227.9	70.6	120.5	94.9	181
g9	O2/month	93.8	118.7	195.6	120	537.2	184.4
g10	N2/month	1093	2508	1412.8	1873.4	2405.9	7482.8
Single ratios							
S1	C2H2/H2	0	0	0	0	0	0
S2	CO2/CO	15.4388	10.1761	6.1581	8.3585	12.7508	7.4167

S3	O2/N2	0.0687	0.0415	0.1027	0.0215	0.0991	0.0277
Degree of polymerization		-	-	630.6766	631.5920	623.6127	409.9619
t (month)		6.63	17.9000	11.9333	7.6667	22.7000	11.8333

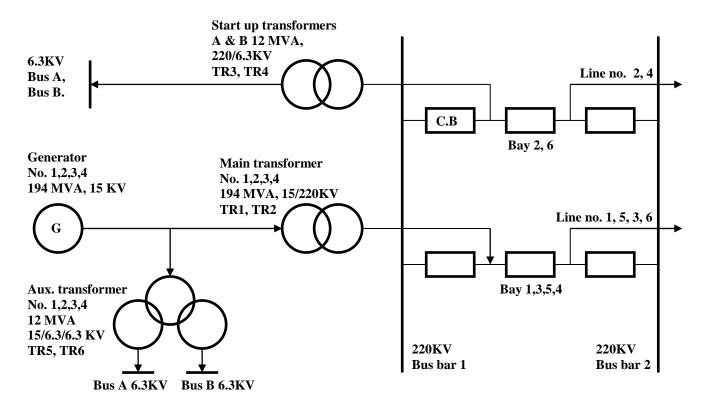


Fig. (8) Schematic diagram for transformers under evaluation