PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation studies of controllers for battery thermal management system with multi-thermoelectric modules

Wybrane pełne teksty z tego czasopisma
Identyfikatory
URI
10.15199/48.2022.08.15
Warianty tytułu
PL
Badania symulacyjne kontrolerów systemu zarządzania temperaturą akumulatora z modułami multi-termoelektrycznymi
Języki publikacji
EN
Abstrakty
EN
In this paper, an simulated investigations for the modified lithium-ion battery thermal management system using PID, as well Null-Space-based Behavioral (NSB) controllers were presented. This work sought to keep the battery life at its optimum temperature using low power. We used thermoelectric modules with collaborating controllers to minimize the electricity consumed during the cooling process. Comparing to PID, NSB controller achieved the reduction of consumed power of 20%, faster temperature return to the set point, and a more uniform controlling the temperature of the battery cells.
PL
W niniejszym artykule przedstawiono wyniki symulacyjnych badań nad zmodyfikowaniem systemu zarządzania temperaturą akumulatora litowo-jonowego z wykorzystaniem regulatora PID oraz regulatora behawioralnego typu Null-Space (NSB). Celem pracy było utrzymanie żywotności baterii w optymalnej temperaturze przy niskim poborze mocy. Wykorzystano moduły termoelektryczne z dedykowanym sterownikiem dla zmniejszenia zużycia energii elektrycznej podczas procesu chłodzenia. W porównaniu do PID, zastosowanie regulatora NSB umożliwia redukcję pobieranej mocy o 20%, szybszy powrót temperatury do wartości zadanej oraz bardziej równomierne sterowanie temperaturą ogniw akumulatora
Rocznik
Strony
77--83
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Applied Science Private University, P.O. Box 166, 11931, Amman, Jordan
  • Applied Science Private University, P.O. Box 166, 11931, Amman, Jordan
  • Tafila Technical University, P.O. Box 179, 66110, Tafila, Jordan
  • Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Tafila Technical University, P.O. Box 179, 66110, Tafila, Jordan
Bibliografia
  • [1] U.S. Information Administration, Monthly Energy Review, Table 2.1, April 2021
  • [2] Gramling C., How electric vehicles offered hope as climate challenges grew. ScienceNews, 200 (2021), 11 (Access 2022.03.10: https://www.sciencenews.org/article/electric-vehicles-cars-climate-change-challenges-2021)
  • [3] International Energy Agency Special Report, 2021. Net Zero by 2050: A Road Map for Global Energy Sector. IEA, Paris (Access 2022.03.10: https://www.iea.org/reports/net-zero-by-2050)
  • [4] Esfahanian V., Renani S.A., Nehzati H., Mirkhani N., Esfahanian M., Yaghoobi O., Safaei A., Design and simulation of air cooledbattery thermal management system using thermoelectric for a hybrid electric bus. Proceedings of the FISITA 2012 World Automotive Congress (2012), 463–4730.https://doi.org/10.1007/978-3-642-33777-2_37
  • [5] Bandhauer T.M., Garimella S., Fuller T.F., A critical review of thermal issues in lithium-ion batteries. Journal of The Electrochemical Society, 158 (2011), 3, 1-25, https://doi.org/10.1149/1.3515880
  • [6] Zhao L., Yang Z., Wang L., Investigation on the non-uniformtemperature distribution of large-diameter concrete silos undersolar radiation. Mathematical Problems in Engineering (2018), Article ID 5304974. https://doi.org/10.1155/2018/5304974
  • [7] Rao Z., Wang S., A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews 15 (2011), 9, 4554-4571. https://doi.org/10.1016/j.rser.2011.07.096
  • [8] Giuliano M.R., Advani S.G., Prasad A.K., Thermal analysis and management of lithium–titanate batteries. Journal of Power Sources 196 (2011), 15, 6517–6524. https://doi.org/10.1016/j.jpowsour.2011.03.09
  • [9] An Z., Jia L., Ding Y., Dang C., Li X., A review on lithium-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science 26 (2017), 5, 391–412. https://doi.org/10.1007/s11630-017-0955-2
  • [10] Li X., Zhong Z., Luo J., Wang Z., Yuan W., Zhang G., … Yang C., Experimental Investigation on a thermoelectric cooler for thermal management of a Lithium-Ion battery module. International Journal of Photoenergy (2019), Article ID 3725364. https://doi.org/10.1155/2019/3725364
  • [11] Javani N., Dincer I., Naterer G.F., Yilbas B.S., Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles. International Journal of Heat and Mass Transfer 72 (2014), 690–703. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.076
  • [12] Jiang G., Huang J., Fu Y., Cao M., Liu M., Thermal optimization of composite phase change material/expanded graphite for Li-ionbattery thermal management. Applied Thermal Engineering 108, (2016), 1119–1125. https://doi.org/10.1016/j.applthermaleng.2016.07.197
  • [13] Wu W., Yang X., Zhang G., Chen K., Wang S., Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system. Energy Conversion and Management 138 (2017), 486–492. https://doi.org/10.1016/j.enconman.2017.02.022
  • [14] Wilke S., Schweitzer B., Khateeb S., Al-Hallaj S., Preventing thermal runaway propagation in lithium-ion battery packs using a phase change composite material: An experimental study. Journal of Power Sources 340 (2017), 51–59. https://doi.org/10.1016/j.jpowsour.2016.11.018
  • [15] Sefidan A.M., Sojoudi A., Saha S.C., Nanofluid-based cooling of cylindrical lithium-ion battery packs employing forced air flow. International Journal of Thermal Sciences 117 (2017), 44–58. https://doi.org/10.1016/j.ijthermalsci.2017.03.006
  • [16] Yang X.-H., Tan S.-C., Liu J., Thermal management of Li-ion battery with liquid metal. Energy Conversion and Management 117, (2016), 577–585. https://doi.org/10.1016/j.enconman.2016.03.054
  • [17] Al-Zareer M., Dincer I., Rosen M.A., Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles. Electrochimica Acta 247, (2017), 171–182. https://doi.org/10.1016/j.electacta.2017.06.162
  • [18] Chen, K., Song, M., Wei, W., & Wang, S., Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement. Energy 145 (2018), 603–613. https://doi.org/10.1016/j.energy.2017.12.110
  • [19] Song W., Chen M., Bai F., Lin S., Chen Y., Feng Z., Non-uniform effect on the thermal/aging performance of lithium-ion pouch battery. Applied Thermal Engineering 128, (2018) 1165–1174. https://doi.org/10.1016/j.applthermaleng.2017.09.090
  • [20] Situ W., Zhang G., Li X., Yang X., Wei C., Rao M., … Wu W., A thermal management system for rectangular LiFePO4 battery module using novel double copper mesh-enhanced phase change material plates. Energy 141 (2017), 613–623. https://doi.org/10.1016/j.energy.2017.09.083
  • [21] Alaoui C., Solid-state thermal management for Lithium-Ion EV batteries. IEEE Transactions on Vehicular Technology 62 (2013), 98–107. https://doi.org/10.1109/tvt.2012.2214246
  • [22] Salameh Z.M., Alaoui C., Modeling and simulation of a thermal management system for electric vehicles. Proceedings of 29th Annual Conference of the IEEE Industrial Electronics Society (2003), Article ID 7954269. https://doi.org/10.1109/iecon.2003.1280100
  • [23] Liu Y., Yang S., Guo B., Deng C., Numerical analysis and design of thermal management system for Lithium-Ion battery pack using thermoelectric coolers. Advances in Mechanical Engineering 6 (2014), Article ID 852712. https://doi.org/10.1155/2014/852712
  • [24] Jiang G., Huang J., Liu M., Cao M., Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material. Applied Thermal Engineering, 120 (2017), 1-9. https://doi.org/10.1016/j.applthermaleng.2017.03.107
  • [25] Doshi M., Udawant S., Devkule D., Gadekar S., Microcontroller based thermoelectric cooling for electric vehicle battery charging application. Proceedings of 2nd International Conference on Communication & Information Processing (ICCIP) 2020, http://dx.doi.org/10.2139/ssrn.3645352
  • [26] Samanta A., Williamson, S.S., A comprehensive review of lithium-ion cell temperature estimation techniques applicable to health-conscious fast charging and smart battery management systems. Energies 14 (2021), 18, 5960. https://doi.org/10.3390/en14185960
  • [27] Chikaraishi R., Deng M., Operator-based nonlinear control of calorimetric system actuated by Peltier device. Machines 9 (2021), (8), 174. https://doi.org/10.3390/machines9080174
  • [28] Wang B., Fernandez J.H., Massoud A., A wireless battery temperature monitoring system for electric vehicle charging. Proceedings of IEEE Sensors (2019), 1-4. https://doi.org/10.1109/sensors43011.2019.8956733
  • [29] Alahmer A., Khalid M.B., Beithou N., Borowski G., Al Hendi H., Alsaqoor S., An experimental investigation into improving the performance of thermoelectric generators. Journal of Ecological Engineering 23 (2022), 3, 100-108. https://doi.org/10.12911/22998993/145457
  • [30] Lyu Y., Siddique A.R.M., Majid S.H., Biglarbegian M., Gadsden S.A., Mahmud S., Electric vehicle battery thermal management system with thermoelectric cooling. Energy Reports 5 (2019), 822-827. https://doi.org/10.1016/j.egyr.2019.06.016
  • [31] Zhang X., Li Z., Luo L., Fan Y., Du Z., A review on thermal management of lithium-ion batteries for electric vehicles. Energy238 (2022), Article ID 121652. https://doi.org/10.1016/j.energy.2021.121652
  • [32] Arrichiello F., Chiaverini S., Indiveri G., Pedone P., The null-space-based behavioral control for mobile robots with velocity actuator saturations. The International Journal of Robotics Research 29 (2010),10, 1317-1337. https://doi.org/10.1177/0278364909358788
  • [33] Sundayani, Sinulingga D.F., Prasetyawati F.M., Palebangan F.M., Suhendi A., Ajiwiguna T.A., … Fathonah I.W., PID temperature controlling of thermoelectric based cool box. Proceedings of International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC’ 2017), 236-240. https://doi.org/10.1109/iccerec.2017.8226671
  • [34] Saleet H., Smart solution for enhancing storage location assignments in WMS using genetic algorithm. International Journal of Engineering Research and Technology 13 (2020), 11, 3456-3463. (Access 2022.03.10: http://www.irphouse.com)
  • [35] Liu Y., Yang S., Guo B., Deng C., Numerical analysis and design of thermal management system for lithium ion battery pack usingthermoelectric coolers. Advances in Mechanical Engineering 6 (2014), Article ID 852712. https://doi.org/10.1155/2014/852712
  • [36] Arrichiello F., Chiaverini S., Fossen T., Formation control of underactuated surface vessels using the null-space-based behavioral control. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (2006). https://doi.org/10.1109/iros.2006.282477
  • [37] Quintana-Carapia G., Benítez-Read J.S., Segovia-De-Los-Ríos J.A., Null space based behavior control applied to robot formation. Proceedings of IEEE World Automation Congress (2012), 1-6 (Access 2022.03.10: https://ieeexplore.ieee.org/abstract/document/6321275)
  • [38] Nemec B., Žlajpah L., Omrčen D., Comparison of null-space and minimal null-space control algorithms. Robotica 25 (2007), 5, 511-520. https://doi.org/10.1017/s0263574707003402
  • [39] Antonelli G., Arrichiello F., Chiaverini S., The NSB control: A behavior-based approach for multi-robot systems. Paladyn, Journal of Behavioral Robotics 1 (2010), 48-56. https://doi.org/10.2478/s13230-010-0006-0
  • [40] Nasir M.T., Afaneh D., Abdallah S., High productivity thermoelectric based distiller. Desalination and Water Treatment 206 (2020), 125-132. https://doi.org/10.5004/dwt.2020.26295
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff1b7a0a-f3ca-48f0-87ee-f8ddc8874a28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.