PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on synthesis and photoelectric properties of AgInS2 quantum dots

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
AgInS2 Quantum dots (AIS QDs) have high quantum yield and catalytic performance, which is promising materials in photo-catalytic and optoelectronic fields. In the paper, it adopted a simple and non-toxic method to synthesize AIS QDs. The effect of reaction temperature on the growth mechanism, optical and physical properties of AIS had been extensively investigated by using L-cysteine as the sulfur source, and their application in catalytic hydrogen production was also studied. The results demonstrated that the fluorescence properties will be quenched with the increase of temperature, indicating that the separation speed of electron hole pairs of samples obtained at higher temperature was faster. Meantime, the electron transport capacity and the photocurrent had also improved with the increase of reaction temperature. Finally, the sample obtained at 100 oC had higher hydrogen production rate.
Rocznik
Strony
21--26
Opis fizyczny
Bibliogr. 20 poz., rys., wz.
Twórcy
autor
  • College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai, China
autor
  • College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai, China
autor
  • College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai, China
autor
  • Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University Nanning, China
autor
  • College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai, China
autor
  • College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai, China
Bibliografia
  • 1. Fan, X., Yu, S., Hou, B. & Kim, J.M. (2019). Quantum dots based photocatalytic hydrogen evolution. Isr. J. Chem. 59, 762–773. DOI: 10.1002/ijch.201900029.
  • 2. Farzin, M.A. & Abdoos, H. (2021). A critical review on quantum dots: From synthesis toward applications in electro-chemical biosensors for determination of disease-related biomolecules. Talanta. 224, 121828. DOI: 10.1016/j.talanta.2020.121828.33379046.
  • 3. Caputo, J.A., Frenette, L.C., Zhao, N., Sowers, K.L., Krauss, T.D. & Weix, D.J. (2017). General and efficient C-C bond forming photoredox catalysis with semiconductor quantum dots. J. Am. Chem. Soc. 139(12), 4250–4253. DOI: 10.1021/jacs.6b13379.28282120.
  • 4. Bratskaya, S., Sergeeva, K., Konovalova, M., Modin, E., Svirshchevskaya, E., Sergeev, A., Aleksandr, M. & Alexandr, P. (2019). Ligand-assisted synthesis and cytotoxicity of ZnSe quantum dots stabilized by N-(2-carboxyethyl) chitosans. Colloids Surf. B. 182, 110342. DOI: 10.1016/j.colsurfb.2019.06.071.31299538.
  • 5. Ranjbar-Navazi, Z., Omidi, Y., Eskandani, M. & Davaran, S. (2019). Cadmium-free quantum dot-based theranostics. TrAC Trends Anal. Chem. 118, 386–400. DOI: 10.1016/j. trac.2019.05.041.
  • 6. Asha, K., Arun, S., Rahul, S., Udayabanu, M. & Ragini, R.S. (2021). Biocompatible and fluorescent water based NIR emitting CdTe quantum dot probes for biomedical applications. Spectrochimica Acta A. 248, 119206. DOI: 10.1016/j. saa.2020.119206.
  • 7. W. William, Y., Qu, L., Guo, W. & Peng, X. (2003). Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860. DOI: 10.1021/cm034081k.
  • 8. Maksim, M., Vera, K., Anton, T., Sergei, C., Anastasiia, S., Viktoria, O., Yulia, G., Mikhail, B., Anatoly F, Yurii, G. & Alexander, B. (2020). FRET-based analysis of AgInS2/ZnAgInS/ZnS quantum dot recombination dynamics. Nanomaterials. 10, 2455. DOI: 10.3390/nano10122455.776328733302496.
  • 9. Ma, W., Zhang, Z., Ma, M., Liu, Y., Pan, G., Gao, H. & Mao, Y. (2020). CuGaS2 quantum dots with controlled surface defects as an hole-transport material for high-efficient and stable perovskite solar cells. Sol. Energy. 211, 55–61. DOI: 10.1016/j.solener.2020.09.058.
  • 10. Chevallier, T., Benayad, A., Le Blevennec, G. & Chandezon, F. (2017). Method to determine radiative and non-radiative defects applied to AgInS2-ZnS luminescent nanocrystals. Phys. Chem. Chem. Phys. 19, 2359–2363. DOI: 10.1039/C6CP06509K.
  • 11. Song, S., Liang, Z., Fu, W. & Peng, T. (2017). Preparation of single-crystalline AgIn5S8 octahedrons with exposed {111} facets and its visible-light-responsive photocatalytic H2 production activity. ACS Appl. Mater. Interfaces. 9, 17013–17023. DOI: 10.1021/acsami.7b01741.28481081.
  • 12. Sousa, F.L., Freitas, D., Silva, S. & Robério, R. (2020). Tunable emission of AgIn5S8 and ZnAgIn5S8 nanocrystals: electrosynthesis, characterization and optical application. Mater. Today Chem. 16, 100238. DOI: 10.1016/j.mtchem.2019.100238.
  • 13. Torimo to, T., Adachi, T. & Okazaki, K. et al. (2007). Facile synthesis of ZnS− AgInS2 solid solution nanoparticles for a color-adjustable luminophore. J. Am. Chem. Soc. 129(41), 12388–12389. DOI: 10.1021/ja0750470.17887678.
  • 14. Tang, X., Ho, W.B.A. & Xue, J.M. (2012). Synthesis of Zn-doped AgInS2 nanocrystals and their fluorescence properties. J. Phys. Chem. C. 116(17), 9769–9773. DOI: 10.1021/jp207711p.
  • 15. Luo, Z., Zhang, H. & Huang, J. et al. (2012). One-step synthesis of water-soluble AgInS2 and ZnS–AgInS2 composite nanocrystals and their photocatalytic activities. J. Colloid Interface Sci. 377(1), 27–33. DOI: 10.1016/j.jcis.2012.03.074.22542007.
  • 16. Kameyama, T., Takahashi, T. & Machida, T., et al. (2015). Controlling the electronic energy structure of ZnS–AgInS2 solid solution nanocrystals for photoluminescence and photocatalytic hydrogen evolution. J. Phys. Chem. C. 119(44), 24740–24749. DOI: 10.1021/acs.jpcc.5b07994.
  • 17. Lan, C.W., Meng, L. & Xu, N. (2022). One-pot synthesis of the direct Z-scheme AgInS2/AgIn5S8 QDs heterojunction for efficient photocatalytic reduction of Cr6+ in neutral condition. Colloid. Surface. A. 632, 127762. DOI: 10.1016/j.colsurfa.2021.127762.
  • 18. Kurshanov, D.A., Gromova, Y.A., Cherevkov, S.A., Ushakova, E.V., Kormilina, T.K., Dubavik, A., Fedorov, A.V. & Baranov, A.V. (2018). Non-toxic ternary quantum dots AgInS2 and AgInS2/ZnS: synthesis and optical properties. Opt. Spectros. 125, 1041–1046. DOI: 10.1134/S0030400X1812010X.
  • 19. Wang, X., Dai, W., Li, X., Chen, Z., Zheng, Z., Chen, Z., Zhang, G., Xiong, L. & Duo, S. (2020). Effects of L-cysteine on the photoluminescence, electronic and cytotoxicity properties of ZnS:O quantum dots. J. Alloys Compd. 825, 154052. DOI: 10.1016/j.jallcom.2020.154052.
  • 20. Esteves, M., Mombrú, D., Romero, M., Fernández-Werner, L., Faccio, R. & Mombr, A.W. (2021) Insights on the structural and electrical transport of sodium titanate nanotubes decorated with CuInS2 quantum dots heterostructures. Appl. Surf. Sci. 535, 147733. DOI: 10.1016/j.apsusc.2020.147733.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff12f12a-b5f0-42de-8b7c-41ff30a50636
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.