PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Orthorhombic 11C pyrrhotite from Michałkowa, Góry Sowie Block, The Sudetes, Poland - preliminary report

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study provides the preliminary report about first occurrence of orthorhombic 11C pyrrhotite (Fe(1-x)S) from the Sudetes, Poland. Samples of pyrrhotite-containing two-pyroxene gabbro were found in a classic pegmatite locality in Michałkowa near Walim in the Góry Sowie Block. Based on microscopic methods, pyrrhotite is associated with pentlandite, chalcopyrite, chromite, ilmenite, gersdorffite, magnetite, biotite, magnesiohornblende, clinochlore, lizardite and talc. X-Ray diffraction (XRD) indicate that pyrrhotite has orthorhombic 11C structure and it is characterized by: a = 3.433(9) Å, b = 5.99(2) Å, c = 5.7432(5) Å, β = 90º and d102 = 2.06906 Å. Mössbauer studies confirmed the XRD data. Pyrrhotite has three sextets with hyperfine parameter values 30.8 T for sextet A, 27.9 T and 25.8 T for sextets B and C respectively, indicating orthorhombic structure, the composition near Fe10S11 and x = 0.0909.
Wydawca
Rocznik
Strony
51--58
Opis fizyczny
Bibliogr. 24 poz., wykr., zdj.
Twórcy
autor
  • Faculty of Earth Sciences, University of Silesia, Będzińska 60 Str., 41-200 Sosnowiec, Poland
  • Faculty of Earth Sciences, University of Silesia, Będzińska 60 Str., 41-200 Sosnowiec, Poland
Bibliografia
  • 1. Arnold R.G., Reichen L.E. (1962) Measurement of the metal content of naturally occurring, metal-deficient hexagonal pyrrhotite by an X-ray spacing method. American Mineralogist, 47, 105111.
  • 2. Becker M., Bradshaw D., De Villiers J.P.R. (2011) The mineralogy of pyrrhotite from Sudbury CCN and Phoenix nickel ores and its effect on flotation performance. Can. Metall. Q., 50 (1), 10–19.
  • 3. Carpenter R.H., Desborough G.A. (1964) Range in solid solution and structure of occurring troilite and pyrrhotite. American Mineralogist, 49, 1350-1365.
  • 4. De Villiers, J.P.R., Liles, D.C., Becker, M. (2009) The crystal structure of a naturally occurring 5C pyrrhotite from Sudbury, its chemistry, and vacancy distribution. American Mineralogist 94, 1405-1410.
  • 5. De Villiers J.P.R., Liles D.C. (2010) The crystal-structure and vacancy distribution in 6C pyrrhotite. American Mineralogist, 95, 148-152.
  • 6. Evans H.T. (1970) Lunar troilite: Crystallography. Science, 167, 621-623.
  • 7. Fleet M.E. (2006) Phase equlibria at high temperatures. In: DJ Vaughan (ed.) Sulfide Mineralogy and Geochemistry. 365-419. (MSA: Washington DC, USA).
  • 8. Grønvold F., Haraldsen H. (1952) On the phase relations of synthetic and natural pyrrhotites (Fe1-xS). Acta Chemica Scandinavica, 5, 1452-1469.
  • 9. Kontny A., de Wall H., Sharp G.P., Pósfai M. (2000) Mineralogy and magnetic behavior of pyrrhotite from a 260°C section at the KTB drilling site, Germany. American Mineralogist, 85, 1416-1427.
  • 10. Koto K., Morimoto N., Gyobu A. (1975) The superstructure of intermediate pyrrhotite. I. Partially disordered distribution of metal vaccancy in the 6C type, Fe11S12. Acta Crystallographica, B31, 2759-2764.
  • 11. Kruse O. (1990) Mössbauer and X-ray study of the effects of vacancy concentration in synthetic hexagonal pyrrhotites. American Mineralogist, 75, 755-763.
  • 12. Lilies D.C., De Villiers J.P.R. (2012) Redetermination of the structure of 5C pyrrhotite at low temperature and at room temperature, American Mineralogist, 97, 257-261.
  • 13. Łodziński M., Sitarz M. (2009) Chemical and spectroscopic characterization of some phosphate accessory minerals from pegmatites of the Sowie Góry Mts, SW Poland, Journal of Molecular Structure 924–926, 442–447.
  • 14. McCammon, C. (1995) Mössbauer Spectroscopy of Minerals. In: TJ Ahrens (ed.) Mineral Physics and Crystallography, A Handbook of Physical Constants, The American Geophysical Union, 332-347.
  • 15. Morimoto N., Nakazawa H., Nishiguchi K., Tokonami M. (1970) Pyrrhotites: Stoichiometric compounds with composition Fen-1Sn (n≥8). Science, 168, 964-966.
  • 16. Morimoto N., Gyobu A., Mukaiyama H., Izawa E. (1975) Crystallography and stability of pyrrhotites. Economic Geology, 70, 824-833.
  • 17. Pósfai M., Sharp T.G., Kontny A. (2000) Pyrrhotite varieties from the 9.1 km deep borehole of the KTB project. American Mineralogist, 85, 1406-1415.
  • 18. Powell A.V., Vaqueiro P., Knight K.S., Chapon L.C., Sanchez R.D. (2004) Structure and magnetism in synthetic pyrrhotite Fe7S8: A powder neutrondiffraction study. Physical Review, B70, 014415-1-014415-12.
  • 19. Ramsdell L.S. (1927) X-ray data on some sulfide minerals (abstr.). American Mineralogist, 12, 79.
  • 20. Rybicki M. (2011) Badania mössbauerowskie siarczków żelaza grupy pirotynu z wybranych lokalizacji Sudetów oraz meteorytów. Interdyscyplinarne zagadnienia w górnictwie i geologii, 2, 129-137 (in Polish).
  • 21. Szuszkiewicz A., Szełęg E., Pieczka A., Ilnicki S., Nejbert K., Turniak K., Banach M., Łodziński M., Różniak R., Michałowski P. (2013) The Julianna pegmatite vein system at the Piława Górna Mine, Góry Sowie Block, SW Poland – preliminary data on geology and descriptive mineralogy, Geological Quarterly, 57, 467-484.
  • 22. Yamamoto, A. and Nakazawa, H. (1982) Modulated structure of the NC-type (N = 5.5) pyrrhotite, Fe1–xS. Acta Crystallographica, A38, 79–86.
  • 23. Websky (1868) Zeitschrift der Deutsche geologische Gesellschaft, Berlin: 20: 245 (in German).
  • 24. Whitney D.L, Evans B.W. (2010) Abbreviations for names of rock-forming minerals, American Mineralogist, 95, 185– 187.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff0d2e11-bbe7-4215-9927-698aed2cd11e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.