PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Impact of Crushed Rock Spoil on Pitting Corrosion of Selected Stainless Steels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of the pitting resistance investigations of selected stainless steels in the chloride environment and the simultaneous impact of erosive factors using the cyclic polarization technique. Additionally, using electrochemical techniques, ie: electrochemical impedance spectroscopy (EIS) and measurement of corrosion potential, the behavior of the passive layer of selected stainless steels in the environment of chlorides and erosion was examined. On the basis of the obtained results, the resist-ance of stainless steels 1.4301 and 1.4404 was found, both on the effect of chloride ions and erosive factors in the studied systems. Both tested steels are susceptible to pitting corrosion. It was found that a good measure of erosive impact on stainless steel is both impedance spectrum analysis and continuous monitoring of the corrosion potential of steel.
Słowa kluczowe
Twórcy
autor
  • Gdansk University of Technology, Faculty of Chemistry, Department of Electrochemistry, Corrosion and Materials Engineering, 11/12 Gabriela Narutowicza Str., 80-233 Gdańsk, Poland
autor
  • KGHM Polska Miedź S.A.
Bibliografia
  • [1] P. A. Schweitzer, Fundamentals of Corrosion Mechanisms, Causes and Preventative Methods, Taylor and Francis Group, 2010.
  • [2] S. Dudka, D. C. Adriano, J. Environ. Qual. 26 (3) 590-602 (1997).
  • [3] M. Y. Naz, S. A. Sulaiman, et al., Measurement. 106 (2) 203-210 (2017).
  • [4] C. G. Duan, V. Y. Karelin (ed.), Abrasive erosion & corrosion of hydraulic machinery, Imperial Colege Press, 2002.
  • [5] G. B. Stachowiak, M. Salasi, W. D. A. Rickard, G. W. Stachowiak, Corrosion Science 111, 690-702 (2016).
  • [6] H. J. D. Bruyn, Int. J. Press. Vessel. Pip. 66 (1-3) 293-303 (1996).
  • [7] A. K. Mahmood, A. A. Khadom, J. Fail. Anal. and Preven. 16 (6) 1071-1081 (2016).
  • [8] R. V. Pludek, Design and Corrosion Control, Palgrave, 2014.
  • [9] K. Żakowski, Anti-corrosion Methods and Materials 58 (4), 167-172 (2011).
  • [10] K. Żakowski, M. Szociński et al., Anti-corrosion Methods and Materials 60 (2), 95-99 (2013).
  • [11] C. C. Nathan (ed.), Corrosion Inhibitors, NACE, Houston, Texas.
  • [12] M. M. Lachowicz, M. B. Lachowicz, Archives of Metalurgy and Materials 60 (4), 2657-2661 (2015).
  • [13] S. Esmailzadeh, M. Aliofkhazraei, H. Sarlak, Protection of Metals and Physical Chemistry of Surfaces 54 (5), 976-989 (2018).
  • [14] A. R. Nuradityatama, M. F. Rendi, S. Setiawan, International Journal of Mechanical Engineering and Robotics Research 6 (6), 512-518 (2017).
  • [15] G. Monrrabal, B. Ramírez-Barat, A. Bautista, F. Velasco, E. Cano, Metals 500 (8), 1-16 (2018).
  • [16] Xiu-qing Xu et al., Int. J. Electrochem. Sci. 13 (10), 4298-4308 (2018).
  • [17] L. Freire, M. J. Carmezim, M. G. S. Ferreira, M. F. Montemor, Electrochim. Acta, 55 (21), 6174-6181 (2010).
  • [18] C. M. Abreu, M. J. Cristobal, R. Losada, X. R. Nóvoa, G. Pena, M. C. Perez, Electrochim. Acta 51 (8-9), 1881-1890 (2006).
  • [19] B. A. Boukamp, Solid State Ionics 20 (1), 31 (1986).
  • [20] G. S. Frankel, N. Sridhar, Materials Today 11 (10), 39-44 (2008).
  • [21] M. P. Ryan, D. E. Williams, R. J. Chater, B. M. Hutton, D. S. McPhail, NATURE 415 (2), 770-77 (2002).
  • [22] K. Darowicki, S. Krakowiak, Electrochimica Acta 42 (16), 2559-2562 (1994).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff0c1588-f9da-4232-bc13-20e6a6b0683a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.