PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Assessment of the possibility of using Bayesian nets and Petri nets in the process of selecting additive manufacturing technology in a manufacturing company

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The changes caused by Industry 4.0 determine the decisions taken by manufacturing companies. Their activities are aimed at adapting processes and products to dynamic market requirements. Additive manufacturing technologies (AM) are the answer to the needs of enterprises. The implementation of AM technology brings many benefits, although for most 3D printing techniques it is also relatively expensive. Therefore, the implementation process should be preceded by an appropriate analysis, in order, finally, to assess the solution. This article presents the concept of using the Bayesian network when planning the implementation of AM technology. The use of the presented model allows the level of the success of the implementation of selected AM technology, to be estimated under given environmental conditions.
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 34, fig., tab.
Twórcy
  • Institute of Mechanical Engineering, University of Zielona Góra
  • Institute of Mechanical Engineering, University of Zielona Góra
Bibliografia
  • [1] Aguilera, P. A., Fernandez, A., Fernandez, R., Rumi, R., & Salmeron, A. (2011). Bayesian networks in environmental modelling. Environmental Modelling & Software, 26(12), 1376–1388. https://doi.org/10.1016/j.envsoft.2011.06.004
  • [2] Ahmed, N. (2019). Direct metal fabrication in rapid prototyping: A review. Journal of Manufacturing Processes, 42, 167-191. https://doi.org/10.1016/j.jmapro.2019.05.001
  • [3] Biedermann, A., & Taroni, F. (2006). Bayesian networks and probabilistic reasoning about scientific evidence when there is a lack of data. Forensic Science International, 157(2–3), 163–167. https://doi.org/10.1016/j.forsciint.2005.09.008
  • [4] Cassandras, C. G., & Lafoyonglirtune, S. (2008). Introduction to Discrete Event Systems. Springer-Verlag.
  • [5] Constantinou, A. C., Fenton, N., & Neil, M. (2016). Integrating expert knowledge with data in Bayesian networks: Preserving data-driven expectations when the expert variables remain unobserved. Expert Systems With Applications, 56, 197–208. https://doi.org/10.1016/j.eswa.2016.02.050
  • [6] Daemi, T., Ebrahimi, A., & Fotuhi-Firuzabad, M. (2012). Constructing the Bayesian network for components reliability importance ranking in composite power systems. Int. J. Electr. Power Energy Syst., 43(1), 474–480. https://doi.org/10.1016/j.ijepes.2012.06.010
  • [7] Dahire, S., Tahir, F., Jiao, Y., & Liu, Y. (2018). Bayesian Network inference for probabilistic strength estimation of aging pipeline systems. Int. J. Press. Vessels Pip., 162, 30–39. https://doi.org/10.1016/j.ijpvp.2018.01.004
  • [8] Fenton, N. E., & Neil, M. (2014). Decision Support Software for Probabilistic Risk Assessment Using Bayesian Networks. IEEE Software, 31(2), 21–26. http://dx.doi.org/10.1109/MS.2014.32
  • [9] Fierro, L. H., Cano, R. E., & García, J. I. (2020). Modelling of a multi-agent supply chain management system using Colored Petri Nets. Procedia Manufacturing, 42, 288–295. https://doi.org/10.1016/j.promfg.2020.02.095
  • [10] Gao, Y., Xu, L., Zhao, Y., You, Z., & Guan, Q. (2020). 3D printing preview for stereo-lithography based on photopolymerization kinetic models. Bioactive Materials, 5(4), 798–807. https://doi.org/10.1016/j.bioactmat.2020.05.006
  • [11] Giebas, D., & Wojszczyk, R. (2018). Graphical representations of multithreaded applications. Applied Computer Science, 14(2), 20–37. https://doi.org/10.23743/acs-2018-10
  • [12] Goole, J., & Amighi, K. (2016). 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int. J. Pharm., 499, 376–394. https://doi.org/10.1016/j.ijpharm.2015.12.071
  • [13] Gran, B. A., & Helminen, A. (2001). A Bayesian Belief Network for Reliability Assessment. In: U. Voges (Eds.), Computer Safety, Reliability and Security. SAFECOMP 2001. Lecture Notes in Computer Science (vol. 2187). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45416-0_4
  • [14] Kabir, S., & Papadopoulos, Y. (2019). Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review. Safety Science, 115, 154–175. https://doi.org/10.1016/j.ssci.2019.02.009
  • [15] Karayuz, I., & Bidyuk, P. (2015). Forecasting GDP growth rate in Ukraine with alternative models. Applied Computer Science, 11(3), 88–97.
  • [16] Lacheheub, M. N., Hameurlain, N., & Maamri, R. (2020). Resources consumption analysis of business process services in cloud computing using Petri Net. Journal of King Saud University – Computer and Information Sciences, 32(4), 408–418. https://doi.org/10.1016/j.jksuci.2019.08.005
  • [17] Liu, H. C, You, J. X., Li, Z. W., & Tian, G. (2017). Fuzzy Petri nets for knowledge representation and reasoning: A literature review. Engineering Applications of Artificial Intelligence, 60, 45–56. https://doi.org/10.1016/j.engappai.2017.01.012
  • [18] Liu, H. C., Lin, Q. L., Mao, L. X., & Zhang, Z. Y. (2013). Dynamic adaptive fuzzy Petri nets for knowledge representation and reasoning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43, 1399–1410. https://doi.org/10.1109/TSMC.2013.2256125
  • [19] Louazani, A., & Sekhri, L. (2020). Time Petri Nets based model for CL-MAC protocol with packet loss. Journal of King Saud University – Computer and Information Sciences, 32(4), 522–528. https://doi.org/10.1016/j.jksuci.2019.09.011
  • [20] Mansour, M. M., Wahab, M. A. A., & Soliman, W. M. (2013). Petri nets for fault diagnosis of large power generation station. Ain Shams Engineering Journal, 4(4), 831–842. https://doi.org/10.1016/j.asej.2013.04.006
  • [21] Nagarajan, B., Hu, Z., Song, X., Zhai, W., & Wei, J. (2019). Development of Micro Selective Laser Melting: The State of the Art and Future Perspectives. Engineering, 5(4), 702–720. https://doi.org/10.1016/j.eng.2019.07.002
  • [22] Nasiri, S., Khosravani, M. R., & Weinberg, K. (2017). Fracture mechanics and mechanical fault detection by artificial intelligence methods: A review. Engineering Failure Analysis, 81, 270–293. https://doi.org/10.1016/j.engfailanal.2017.07.011
  • [23] Patalas-Maliszewska, J., & Krebs, I. (2015). Decision model for the use of the application for knowledge transfer support in manufacturing enterprises. In: W. Abramowicz (Eds.), Business Information Systems Workshops. BIS 2015. Lecture Notes in Business Information Processing (vol. 228). Springer, Cham. https://doi.org/10.1007/978-3-319-26762-3_5
  • [24] Patalas-Maliszewska, J. (2012). Assessing the Impact of ERP Implementation in the Small Enterprises. Foundations of Management, 4(2), 51062. https://doi.org/10.2478/fman-2013-0010
  • [25] Patalas-Maliszewska, J., Feldshtein, E., Devojno, O., Śliwa, M., Kardapolava, M., & Lutsko, N. (2020). Single Tracks as a Key Factor in Additive Manufacturing Technology-Analysis of Research Trends and Metal Deposition Behaviour. Materials, 13(5), 1115. https://doi.org/10.3390/ma13051115.
  • [26] Patalas-Maliszewska, J., Topczak, M., &, Kłos, S. (2020). The Level of the Additive Manufacturing Technology Use in Polish Metal and Automotive Manufacturing Enterprises. Applied Science, 10(3), 735. https://doi.org/10.3390/app10030735
  • [27] Penaranda, X., Moralejo, S., Lamikiz, A., & Figueras, J. (2017). An adaptive laser cladding methodology for blade tip repair. The International Journal of Advanced Manufacturing Technology, 92, 4337–4343. https://doi.org/10.1007/s00170-017-0500-1
  • [28] Ramírez-Noriega, A., Juárez-Ramírez, R., & Martínez-Ramírez, Y. (2017). Evaluation module based on Bayesian networks to Intelligent Tutoring Systems. Int. J. Inf. Manag., 37(1), 1488–1498. https://doi.org/10.1016/j.ijinfomgt.2016.05.007
  • [29] Rebello, S., Yu, H., & Ma, L. (2019). An integrated approach for real-time hazard mitigation in complex industrial processes. Reliability Engineering & System Safety, 188, 297–309. https://doi.org/10.1016/j.ress.2019.03.037
  • [30] Rosário, C. R., Kipper, L. M., Frozza, R., & Mariani, B. B. (2015). Modeling of tacit knowledge in industry: Simulations on the variables of industrial processes. Expert Systems with Applications, 42(3), 1613–1625. https://doi.org/10.1016/j.eswa.2014.09.023
  • [31] Shin, J., Kim, S., & Lee, J. M. (2015). Production and inventory control of auto parts based on predicted probabilistic distribution of inventory. Digital Communications and Networks, 1(4), 292–301. https://doi.org/10.1016/j.dcan.2015.10.002
  • [32] Wieleba, R. (2011). Knowledge Engineering in the expert systems. Sci. Notebooks Warsaw Univ. Inf. Technol., 5, 195–216.
  • [33] Yanrong, H., & Yang, S. X. (2004). A knowledge based genetic algorithm for path planning of a mobile robot. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. (vol. 5, pp. 4350–4355). https://doi.org/10.1109/ROBOT.2004.1302402
  • [34] Yongli, Z., Limin, H., Liguo, Z., & Yan, W. (2008). Bayesian network based time-sequence simulation for power system reliability assessment. Seventh Mexican International Conference on Artificial Intelligence (pp. 271–277). IEEE.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff09b992-9eb8-48c4-a054-969e1033d387
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.