PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Corrosion Protection of Selected Aluminum Wrought Alloys applied in the Automotive Industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper aims to review the corrosion properties of selected aluminum alloys applied in the automotive industry which are used in heat exchangers, bodyworks and car wires. Particular attention was focused on application of selected chemical compounds which added to corrosive environment in certain amounts lead to decrease of corrosion rate of protected aluminium alloy. Considered different environmental conditions which are simulating real vehicle exploitation. At review analyzed ability to application mentioned compounds on automotive parts, because there is needed fill of following requirements: environmentally friendly, relatively inexpensive and characterized by long-term performance under certain conditions. Main conclusion of review is that there are needed extension of research regarding to application of inhibitive compounds especially on the surface of cars wires.
Twórcy
  • UST AGH University of Science and Technology in Kraków, Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • UST AGH University of Science and Technology in Kraków, Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] K. Peta, K. Grochalski, A. Piasecki, J. Żurek, The influence of sodium chlorides fog on corrosion resistance of heat exchangers used in automotive, Arch. Mech. Technol. Mater. 37, 45-49 (2017). DOI: https://doi.org/10.1515/amtm-2017-0007
  • [2] Y. Oya, Y. Kojima, N. Hara, Influence of silicon on intergranular corrosion for aluminum alloys, Nippon Kinzoku Gakkaishi/Journal Japan Inst. Met. 78, 52-59 (2014). DOI: https://doi.org/10.2320/jinstmet.J2013058
  • [3] X. Chen, W. Tian, S. Li, M. Yu, J. Liu, Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycolwater solution. Chinese J. Aeronaut. 29, 1142-1150 (2016). DOI: https://doi.org/10.1016/j.cja.2015.12.017
  • [4] S. Tierce et al., Corrosion behaviour of brazing material AA4343, Electrochim. Acta 52, 1092-1100 (2006). DOI: https://doi.org/10.1016/j.electacta.2006.07.007
  • [5] S. Tierce et al., Corrosion behaviour of brazed multilayer material AA4343/AA3003/AA4343: Influence of coolant parameters, Corros. Sci. 49, 4581-4593 (2007). DOI: https://doi.org/10.1016/j.corsci.2007.04.013
  • [6] A.R. Yazdzad, T. Shahrabi, M.G. Hosseini, Inhibition of 3003 aluminum alloy corrosion by propargyl alcohol and tartrate ion and their synergistic effects in 0.5% NaCl solution, Mater. Chem. Phys. 109, 199-205 (2008). DOI: https://doi.org/10.1016/j.matchemphys.2007.11.012
  • [7] Y. Liu, Y.F. Cheng, Inhibition of corrosion of 3003 aluminum alloy in ethylene glycol-water solutions, J. Mater. Eng. Perform. 20, 271-275 (2011). DOI: https://doi.org/10.1007/s11665-010-9684-3
  • [8] Y. Liu, Y.F. Cheng, Inhibiting effect of cerium ions on corrosion of 3003 aluminum alloy in ethylene glycol-water solutions, J. Appl. Electrochem. 41, 383-388 (2011). DOI: https://doi.org/10.1007/s10800-010-0247-y
  • [9] B. El Ibrahimi et al., Cysteine duality effect on the corrosion inhibition and acceleration of 3003 aluminium alloy in a 2% NaCl solution, Port. Electrochim. Acta 36, 403-422 (2018). DOI: https://doi.org/10.4152/pea.201806403
  • [10] M. Chadili et al., Corrosion Inhibition of 3003 Aluminum Alloy in Molar Hydrochloric Acid Solution by Olive Oil Mill Liquid By-Product, Int. J. Corros. 2021, (2021). DOI: https://doi.org/10.1155/2021/6662395
  • [11] L.A. Nnanna, I.U. Anozie, A.G.I. Avoaja, C.S. Akoma, E.P. Eti, Comparative study of corrosion inhibition of aluminium alloy of type AA3003 in acidic and alkaline media by Euphorbia hirta extract, African J. Pure Appl. Chem. 5, 265-271 (2011).
  • [12] O. Sekunowo, S. Durowaye, E. Anozie, Corrosion Propensity of Cold Deformed 5052 Aluminium Alloy in Seawater, Br. J. Appl. Sci. Technol. 8, 46-52 (2015). DOI: https://doi.org/10.9734/bjast/2015/16681
  • [13] M.A. Arenas, M. Bethencourt, F.J. Botana, J. De Damborenea, M. Marcos, Inhibition of 5083 aluminium alloy and galvanised steel by lanthanide salts, Corros. Sci. 43, 157-170 (2001). DOI: https://doi.org/10.1016/S0010-938X(00)00051-2
  • [14] P. Zhou et al., Influence of Microstructure Heterogeneity on the Corrosion Resistance and Microhardness of 5052 Al-Mg Alloy, Jom 72, 4305-4314 (2020). DOI: https://doi.org/10.1007/s11837-020-04364-5
  • [15] C. Zhu et al., Synergistic effect between glutamic acid and rare earth cerium (III) as corrosion inhibitors on AA5052 aluminum alloy in neutral chloride medium, Ionics (Kiel). 25, 1395-1406 (2019). DOI: https://doi.org/10.1007/s11581-018-2605-4
  • [16] S. Gudic et al., Corrosion inhibition of aa 5052 aluminium alloy in nacl solution by different types of honey, Int. J. Electrochem. Sci. 11, 998-1011 (2016).
  • [17] Y. Huang et al., Effect of homogenization on the corrosion behavior of 5083-H321 aluminum alloy, J. Alloys Compd. 673, 73-79 (2016). DOI: https://doi.org/10.1016/j.jallcom.2016.02.228
  • [18] H. Hachelef, A. Benmoussat, A. Khelifa, D. Athmani, D. Bouchareb, Study of corrosion inhibition by electrochemical impedance spectroscopy method of 5083 aluminum alloy in 1M HCl solution containing propolis extract, J. Mater. Environ. Sci. 7, 1751-1758 (2016).
  • [19] W.J. Liang, P.A. Rometsch, L.F. Cao, N. Birbilis, General aspects related to the corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu, Corros. Sci. 76, 119-128 (2013). DOI: https://doi.org/10.1016/j.corsci.2013.06.035
  • [20] B. Zaid, D. Saidi, A. Benzaid, S. Hadji, Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy, Corros. Sci. 50, 1841-1847 (2008). DOI: https://doi.org/10.1016/j.corsci.2008.03.006
  • [21] R. Rosliza, H.B. Senin, W.B.W. Nik, Electrochemical properties and corrosion inhibition of AA6061 in tropical seawater, Colloids Surfaces A Physicochem. Eng. Asp. 312, 185-189 (2008). DOI: https://doi.org/10.1016/j.colsurfa.2007.06.061
  • [22] D.Q. Zhang et al., Corrosion inhibition of ammonium molybdate for AA6061 alloy in NaCl solution and its synergistic effect with calcium gluconate, Surf. Interface Anal. 44, 78-83 (2012). DOI: https://doi.org/10.1002/sia.3774
  • [23] K. Raviprabha, R.S. Bhat, Inhibition Effects of Ethyl-2-Amino4-Methyl-1,3-Thiazole-5-Carboxylate on the Corrosion of AA6061 Alloy in Hydrochloric Acid Media, J. Fail. Anal. Prev. 19, 1464-1474 (2019). DOI: https://doi.org/10.1007/s11668-019-00744-5
  • [24] D. Zhang et al., Preparation of self-healing hydrophobic coating on AA6061 alloy surface and its anti-corrosion property, J. Alloys Compd. 774, 495-501 (2019). DOI: https://doi.org/10.1016/j.jallcom.2018.10.080
  • [25] Amag, Sheets for Lightweight Automotive Applications, 6-9 (2012).
  • [26] J. Ryl et al., Effect of native air-formed oxidation on the corrosion behavior of AA 7075 aluminum alloys, Corros. Sci. 87, 150-155 (2014). DOI: https://doi.org/10.1016/j.corsci.2014.06.022
  • [27] P.V. Kumar, G.M. Reddy, K.S. Rao, Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds - Effect of post weld heat treatment, Def. Technol. 11, 362-369 (2015). DOI: https://doi.org/10.1016/j.dt.2015.04.003
  • [28] A. Singh et al., Plant derived cationic dye as an effective corrosion inhibitor for 7075 aluminum alloy in 3.5% NaCl solution, J. Ind. Eng. Chem. 20, 4276-4285 (2014). DOI: https://doi.org/10.1016/j.jiec.2014.01.033
  • [29] G. Bereket, A. Yurt, The inhibition effect of amino acids and hydroxy carboxylic acids on pitting corrosion of aluminum alloy 7075, Corros. Sci. 43, 1179-1195 (2001). DOI: https://doi.org/10.1016/S0010-938X(00)00135-9
  • [30] P. Kwolek, Corrosion behaviour of 7075 aluminium alloy in acidic solution, RSC Adv. 10, 26078-26089 (2020). DOI: https://doi.org/10.1039/d0ra04215c
  • [31] A. Laurino, Aluminum Solutions and Testing Methods Louis Chretien Influence of Cold-Working on Corrosion Behavior of Aluminum Alloys, (2018). DOI: https://doi.org/10.4271/2014-01-0220.Copyright
  • [32] Z. Pakiela, K. Ludwichowska, J. Ferenc, M. Kulczyk, Mechanical properties and electrical conductivity of Al 6101 and 6201 alloys processed by hydro-extrusion, IOP Conf. Ser. Mater. Sci. Eng. 63, (2014). DOI: https://doi.org/10.1088/1757-899X/63/1/012120
  • [33] R. Gravina et al., Corrosion behaviour of AA 1370 strands for wires: Identification of the critical metallurgical parameters, Corros. Sci. 134, 112-121 (2018). DOI: https://doi.org/10.1016/j.corsci.2018.02.016
  • [34] R. Gravina, N. Pébère, A. Laurino, C. Blanc, Corrosion behaviour of an assembly between an AA1370 cable and a pure copper connector for car manufacturing applications, Corros. Sci. 119, 79-90 (2017). DOI: https://doi.org/10.1016/j.corsci.2017.02.022
  • [35] E. Rhaiem, T. Bouraoui, F. El Halouani, Corrosion evolution of the aluminum alloys used in overhead transmission lines, IOP Conf. Ser. Mater. Sci. Eng. 28, (2012). DOI: https://doi.org/10.1088/1757-899X/28/1/012011
  • [36] T. Köhler, M. Grätzel, J.P. Bergmann, Influence of different Ni coatings on the long-term behavior of ultrasonic welded EN AW 1370 cable/EN CW 004A arrestor dissimilar joints, Weld. World 65, 429-440 (2021). DOI: https://doi.org/10.1007/s40194-020-01030-x
  • [37] A. Laurino et al., Effect of corrosion on the fatigue life and fracture mechanisms of 6101 aluminum alloy wires for car manufacturing applications, Mater. Des. 53, 236-249 (2014). DOI: https://doi.org/10.1016/j.matdes.2013.06.079
  • [38] F. Kherouf, S. Boutabba, K. Bey, A. Chettah, J.C. Boyer, Mesoscopic comparison of interface tool/workpiece for simulation by FEM of en AW 1350 bulk forming alloy, Mech. Ind. 16, (2015). DOI: https://doi.org/10.1051/meca/2015004
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff08be41-26a6-4f47-905a-dff45df9b1c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.