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ABSTRACT. In this paper, constrained minimization for the point of closest approach of two
conic sections is developed. For this development, we considered the nine cases of possible
conics, namely, (elliptic—elliptic), (elliptic—parabolic), (elliptic—hyperbolic), (parabolic—
elliptic), (parabolic—parabolic), (parabolic—hyperbolic), (hyperbolic—elliptic), (hyperbolic—
parabolic), and (hyperbolic—hyperbolic). The developments are considered from two points of
view, namely, analytical and computational. For the analytical developments, the literal
expression of the minimum distance equation (S) and the constraint equation (G), including
the first and second derivatives for each case, are established. For the computational
developments, we construct an efficient algorithm for calculating the minimum distance by
using the Lagrange multiplier method under the constraint on time. Finally, we compute the
closest distance S between two conics for some orbits. The accuracy of the solutions was
checked under the conditions that L|soyeion < €15 Glsorution < €2, Wherees , < 10710, For the
cases of (parabolic—parabolic), (parabolic—hyperbolic), and (hyperbolic—hyperbolic), we
studied thousands of comets, but the condition of the closest approach was not met.

Keywords: distance function, Lagrange multiplier, objective function, Hessian matrix,
minimum distance

1. INTRODUCTION

The problem of determining the point of closest approach of two orbits has important
applications. In planetary theory, the point of closest approach is interesting for visual
observations of planetary surfaces. Moreover, the closest approach is essential for determining
the critical distance at which a warning is activated. On the other hand, the point of closest
approach is crucial for rendezvous considerations. Specifically, for space probes,
photographic limits or on—off camera times require the determination of the closest approach
for predicting when to activate the camera or transmission equipment (Liu et al., 2004). The
prefilter is required to cancel the objects that are not in conjunction with the target spacecraft
before further close approach analysis. The most common prefilter methods are the apogee—
perigee filter and altitude difference filter methods (Zheng and Wu, 2004). The close approach
analysis can be applied on the orbital elements and also for geometrical analysis of the orbital
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elements. In these cases, the information of the closest approach events could be obtained by
applying the differential method. On the other hand, the numerical methods are based on the
orbital ephemeris of objects either at certain time steps during a certain interval or the position
and velocity mnformation obtaned from the orbital model. The relative position and closest
approach information are obtained by numerical processing methods, such as difference,
mterpolation, fitting, and polynomial root-finding to the orbital ephemerides or positions.
Kholshevnikov and Vassiliev (1999) developed the critical points of the distance function
between two confocal Keplerian elliptic orbits, which was reduced to the eighth-order degree
(Zheng and Wu, 2004). In nondegenerate cases, a polynomial of a lower degree with such
properties does not exist. Baluyev and Kholshevnikov (2005) extended the concept to all
possible cases of orbital pairs required in two-body problems. Hoots et al. (1984) completed
the calculation of the number of times of future close approaches between pairs of satellites,
which was formulated using analytical techniques. The resulting analytical equations are
solved using numerical iterative techniques similar to solving Kepler’s equation. A solution is
obtained in a very efficient manner by using a series of prefilters that eliminate many cases
from further consideration. The method is valid for all values of eccentricities <1 and all
relative geometries between the two orbits. This approach produces results in a very efficient
and reliable manner. Sharaf and Sharaf (1997) extended the closest approach concept by using
the general formulations of the closest approach (universal closest approach) at all orbits.
Universal formulations of closest approach problems are established and solved by two
methods. The first method uses the technique of unconstrained minimization and needs the
solution of the universal Kepler’s equation twice, while for the second method, a constraint
minimization technique is developed, which needs the solution of two nonlinear simultaneous
equations (Sharaf and Sharaf, 1997). Denenberg and Gurfil (2016) described the probability
of collision using the closest approach (between space debris and spacecraft) and calculated
the time of closest Approach (TCA) between the spacecraft and the space debris by three
methods:

The first is a surrogate-based optimization (SBO) algorithm, using the Alfano (1994) Close
Approach Software (ANCAS) as the model, allowing a compromise between calculation
speed and accuracy. The second is a generalization of ANCAS over mitial conditions as well
as time. The third uses ANCAS generalization as a model for SBO (Denenberg and Gurfil,
2016). In the present paper, we established a constraint minimization technique to determine
the point of closest approach of any two conic orbits whose orbital elements are known. We
studied three different cases of orbits through numerical analysis; furthermore, the
determinant of the global minimum of the coasting function was derived. The objective
function will be as follows: (elliptic—elliptic), (elliptic—parabolic), and (elliptic—hyperbolic)
(under (G) constraint).

2. DISTANCE FUNCTION
In this section, the constrained minimization problem is developed for the determination of

the point of closest approach of any two conic sections.

2.1. The plane coordinates

Let (6D, n) (§@ @) and (§3),7®) be the plane coordinates for elliptic, parabolic and
hyperbolic orbits, respectively (Escobal, 1965). Figure 1 shows the coordinate system used.
The set of axes (¢ ,7n ) is introduced with the origin at the focus; the positive ¢ pointing along
the minimum pericenter and the # axis are advanced by a right angle to €.
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Figure 1. Axes (&, ) eccentric and true anomalies (Brown, 2004; Moulton, 1960)

The rectangular coordinates of the two bodies i = 1 or 2 in their orbits are as follows:

§W = a; (cosE; — €)™ = a;/1— €?; sin E; O
fi fi
fi(z) = q; (1 — tan? ;) ,T]i(z) = qu tan; (2)
& = a; (cosh H; — e),n;® = —a; [e?; — 1 sinh H; 3)

where a, e, andg are the semimajor axis, eccentricity, and the pericenter distance (perihelion
distance), respectively, and f, E, and H are the true, elliptic eccentric, and the hyperbolic
eccentric anomalies, respectively.

2.2. Transformation to the fundamental plane

The transformation of the orbital plane coordinates to the fundamental plane (ecliptic or
equator) coordinates (x, y,z) are obtained by the following well-known vector mappings:

7 =g W54 000, =12 k=120r3 (4)

where the components of the unit vectors p; = (Pyi Pyi,Pzi) and (31- = (Qxi» Qyi, Q) are
given in terms of the orbit orientation angles I, w, and £2 by the following equations:

Dxi = COSw;cosf); — sinw;sinf;cosl; &)

ﬁyi = cosw;sin(); + sinw;cos);cosl; (6)

D i = Sinw;sinl; (7)

Qi = Pyi(l,w +90°, Q) = —sinw;cosQ; + cosw;sinQ;cosl; (8)
ayi = pyi(,w+90° Q) = —sinw; sinQ; + cos w;cos Q;cos I; 9)
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Qi = ppi(lw + 90°,Q) = cosw; sinl; (10)

where I, and (2 are the inclination, argument of pericenter, and longitude of the ascending
node, respectively (Vallado, 2013).

2.3. Distance and constraint functions

The problem is to find the minimum of the difference between ﬁ(kl)and Fz(kZ), where ki, =

1,20r3 and kymay or may not be equal tok, . Thus, the objective is to minimize the
equivalent expression:

S5 (k S (k > (k > (k
(AI‘)ZZ (rl( 1)_ rz( 2)).(1,1( 1)_ rz( 2)) (11)

where (@) . (E) is used to denote the scalar product of the two vectors a and b. The above
equation [Eq. (11)] could be rewritten as follows:

Bn-Pn)=1,@Qn-Qu)=1,(Bp . Qu)=0,n=12 (12)

k
S=(@r)2 = (& "2+ (7,502 4 (6,52 4 (3, (k)2 4 g, KD g,k 4

13
& (W 1y kD) 4y £, €2y (k) 4 ¢ gy G, (ko) -

a=-2P.P,), B =2 (P.Q2), ¥ =2(P,.Q), { =2(Q . Qy) (14)

where S is the objective function to be minimized (Figure 2).

&

Figure 2. Distance S between two elliptic orbits

The relations between position and time for the different conic sections are given as follows
(Escobal, 1965):

Tli(l)(t — Ti(l)) = Ml'(l) = Ei — €SiTlEi
n@(t—1,®@) = ;P = y2¢,;3/2 {tan% +§tan3 %} i=1,2 (15)
Tli(3) (t - Tl'(3)) = Mi(3) = el-shinHl- - Hi

where n,tr, and M are, respectively, the mean motion, the time of pericenter passage, and
mean anomaly. Equation (13) is the objective function, which is to be minimized. Since the
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problem involves the dynamics of the two bodies, it must also be for any universal time ¢ and
its corresponding position and time:

M, (k1) M., (k2)

(k) = ¢ — 2 (k2) (16)
p Gep T S =T gy T

The constraint of the problem G can be stated as follows:

_ M, (k1) Mz(kz)

G - nl(kl) - nz(kz)

+ 1, () — g, (k) = (17)

3. PROBLEM FORMULATION

In this section, we shall establish computational algorithms for the point of closest approach
of the two possible cases of approaching conic sections. Each case is characterized by two
integers indicating the types of conic sections of the case k) = 1 and k, = 3, which means that
the first conic section is elliptic, while the second is hyperbolic. It should be noted that the
case with k1 =1 and k, =3 is not the case with k; =3 and k, = 1; therefore, they should be
treated separately. Furthermore, if k; equals k,, the two approaching conics are of the same
type. Each case is then developed analytically and computationally. For the analytical
developments, the literal forms of the distance equation (S) and the constrained equation (G)
are applied. We turn now to the study of minimization with constraints. It is convenient to use
the Lagrangian associated with the constrained problem, defined as follows:

L(x ,y,A) =f(x,y) + 1G(x,y) (18)
The local minimum and maximum points are the roots of the gradient L = 0.

According to the constraint minimization techniques, the new function to be minimized is as
follows:

L(A,xl X2 ) =S(X1 X2 )+AG(X1 X2 ) (19)

Here, 4 is known as the Lagrange multiplier, (S) is the objective function, and (G) is the
subject of the constraint; xq,x, represent the different anomalies. The extreme point of any
system of nonlinear equations can be obtained by setting VL = 0.

~ <6L oL oL )_ ) W
L=a1’ e ax,®)~

The approach of using the Lagrange construction and setting its gradient to zero is known as
the method of Lagrange multipliers (Junkins, 2004).

Z—j —0&G =0 )
oL  aS G
axl(kﬂ - 6x1(k1) +4 axl(k1) =0 (3)
oL S G
92,0 ~ 9x, 0 T A 55,00 =0 €
as as
axl(k1) axz(kz)
- oG ~—  0G ®)
axl(k1) axz(kz)
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From Egs. (21), (22), (23), and (24), we can write
as aG as G
axz(kZ) axl(kl) - axl(kl) axz(kZ) -
A sufficient condition for a mmimum is that the Hessian matrix is positive definite (a

symmetric matrix is positive definite if and only if all eigenvalues are positive). The minimum
or maximum solutions are checked by the Hessian matrix, as follows:

(6)

0 G G
ax, (kD) dx,(k2)
aG 025 + 092G a’s 826
H = |5x,00 ax, (k) dx, (k1) ? dx1(k1) 9x,(k2) dx1(k1) 9x,(k2) (26)
aG a%s 926 92s 926
[0,k Bx, (kD ax,(k2) ax,(kD ax,(k2) 9x,k2) dx,k2)
Ei lf k =1
ki,-123 and x; =< f; if k=2 (27)
Hi lf k = 3

3.1. The sufficient condition for the closest approach

During a space mission, all types of conic motion appear. Therefore, we need formulae for
determining the closest approach for any possible two conic orbits. Nine cases have been
deduced and discussed. Substituting from Eqgs. (1), (2), and (3) into Eqgs. (13) and (14), we

write the formulas for every two orbits separately.

3.1.1. The point of closest approach between two elliptic conic sections(k,; = 1,k, = 1)

S(E;, E3) = aja, (—el(acosEz — ae, + By 1 — ey?sinE, + cosE,) (acosE;
+ ¥y 1 — e;%sinE;) — ey (acosE; + yy 1 — e, ?sinkE;)

+/1 — e,2sinE,(BcosE, ++/1 — elzisinEl)) + a,%(e; cosE; — 1)?
+ a,2%(eycosE, — 1)2

G(E, E,) = <a‘l11_3> (E; — esin(Ey)) — /(61;21_3> (E, — epsin(Ey)) +7, —1, =0 (29)

Egs. (28) and (29) represent the objective function (S) and constraint (G) of two elliptic orbits.
The basic equations of our special elliptical cases are as follows:
aS

— = —2a,%e 1% sinE; cosE; +a;(2a; e; — a&, — B ny)sink;
0E, (30)

+a; (1 —e?)(y& +{ny) cos(Eq)

(28)

dSs ) .
— = —2a,%e ,2sinE,cos E; + a, (2a, e, —a&; —ymn,) sink,
JE, 31)

+a; /(1 — e?;) (Bg +my)cos(Ey)

G
35, = V@*/W (- ercosEy) (32)
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oG
E: —v (a3 /W)(1 — e,cosE,) (33)

We solve the system of Egs. (30), (31), (32), and (33) using Egs. (21), (22), (23), and (25);
thus, the expressions are written as follows:
S 0G dS 0G

L(E, E,) = - =
(E1, E2) 3E, 0E, 0E,0E,  ° (34)

G(Ey,Ez) =0 (35)

3.1.2. The point of closest approach between elliptic and parabolic conic sections (k; =1,
k,=2)
_ 23 q . 2 . .
S(Ey, fr) = T+ coshy (—e (a + Bsinf,) + e?,(—sinEy)(y + {sinf,)
2
+ cosEi(a + Bsinf,) + sinE; (y + {sinf,))

+ a,%(ey*sin?E, + e;?cos2E; — 2e,cosE; + 1) (36)

1 1
- quz(COSZfZ - 3)sec4§f2

G(Ey, f2) = ’ (E1 — e;sinE;) — q2 + tan3 ];2) +11-17,=0 (37)

Here, Egs. (34) and (36) represent the objective function (S) and constraint (G), respectively,
of the elliptic and parabolic orbits. The basic equations of our special elliptic and parabolic
cases are as follows:

as

—— = —2a, 2e % sinE; cos E; +a;(2a; e; — aé, — B n,)sink;
oE, (38)

+a; V(1 —e?)yé& + 7 ny) cos(Ey)

2_;2 = q,Sec? (g) {Zqztan (j;z) + B& + Iy — (@éy +yny)tan (j;—z)} (39)
;Tcl = (a;3> (1— e;cosEy) (40)

Z—Z jis () (41)

The system of Egs. (38), (39), (40), and (41) is solved using Egs. (21), (22), (23), and (24);
thus, we write as follows:

L(E ) 98 a_G_a_Sa_G 0
w2 =57, a8, 9k of; )

G(Ef) =0 (43)
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3.1.3. The point of closest approach between elliptic and hyperbolic conic sections (k1 = 1,
ky=3)

S(E,,Hy) = agay{—e; (acosE; + y+/1 — e, %sinE,)
+ e (aez + f+/e;% — 1 sinhH, — acosth)
+ coshH, (acosE1 + /1 —e? sinEl) (44)

— ye,? — 1sinhH, (ﬁcosEl ++/1— elzsinEl) }

+ a,2%(ey cosh Hy — 1)2 + a,2%(e; cosE; —1)?

G(E;, H,) = <a‘l11_3> (E; — esin(Ey)) — (—%) (eysinh(H,) — Hy )+ 14 — T,

=0

(45)

Here, Egs. (44) and (45) represent the objective function (S) and constraint (G), respectively,
of elliptic and hyperbolic orbits. The basic equations of our special elliptic and hyperbolic
cases are as follows:

as ) .
—— = —2a,%e,? sinE; cosE; +a,(2a,e; —aé, — f ny)sink;

+a; V(1 —e?)yé+ {ny)cos(Ey)
aS

—— = 2a,%e,?% shinH,coshH, + a,(—2a,e, + aé; +y n,)shinH,
OH, 47)

— agy/ €2 — 1(Bé; + { my) coshH,

oG a3
ET = o (1—e,cosE,; ) (48)

aG 323
— = /__ 1— H 49
o, p ( e,coshH;) (49)

The system of Egs. (46), (47), (48), and (49) are solved using Egs. (21), (22), (23), and (24);
thus, we write as follows:

0S 0G 0SS dG 0

OH, 0E, OE,0H, (50)

L(EL Hz) =

G(E{,Hy) =0 (51)
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3.1.4. The point of closest approach between parabolic and elliptic conic sections (k| = 2,
k,=1)

f .
S(f B2) = ayqusec? | —e(a +y sin i)

+ /1—e22 sinE, (B + {sinf;)cos E, (a+ysinf1)> (52)
2 2 1 fl
+ as(eycosE, — 1) — 5 Z(cos2f; —3)sec* 5

2¢,° f 3
G(f1,E,) = < Zl >< %+3ta ];1> <a72)(E2— e,sin(E,))+1, —1, =0 (53)

Here, Egs. (52) and (53) represent the objective function (S) and constraint (G), respectively,
of parabolic and elliptic orbits. The basic equations of our special parabolic and elliptic orbit
systems are as follows:

as
57 = aisec @ fastan’ (B) + v6o + 0o - @t pupeancd) (s4)
as s o . .
3E, = —2ay%e ,%sinE, cos E, + a, (2a, e, — aé; — y ny)sinkE, )
+ay (1 —e?;) (BE +m)cos(Ey)
aG _ q° 1
77~ (25 (3) £
aG
6_Ez =— <a; )(1 — e,cosE,) (57)

The system of Egs. (54), (55), (56), and (57) are solved using Egs. (21), (22), (23), and (24);
thus, we obtain the following:

dS oG  dS 0G

LB = 55 38, " aB, 05, (58)

G(f,E;)=0 (59)

3.1.5. The point of closest approach between two parabolic conic sections (k1 = 2,k, = 2)

S(fi, f2) = qlzsec“% + qlqzsecz% sec? %+ (a + Bsinf,) + qzzsec‘*%
N
+ 2yq,q,sec 7tan71 (60)
+ 4 (q 2tan? /i+ (qlqztanj; tan%+ q,°tan? fz)
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_ q.° fi, 1 f1 q2° f2,1 f2
S(fi, f2) = (27> (tan— + —tan3 —) — (27> (tan? +3 tan3 ?) + 17 61)

Egs. (60) and (61) represent the objective function (S) and constraint (G), respectively, of two
parabolic orbits. The basic equations of our special parabolic orbit systems are as follows:

5751 = qisec? (%) {qu tan® (%) +¥82 + {1z — (a$ + B n2) tan (%)} (62)
g—;z = g,sec? (%) {Zqztan3 (%) +B& +{m —(a§ +ym)tan (%)} (63)

3G ’ 3
of, Célu sec? <L21> (64)
2 A\

The formula in Eq. (61) is solved using Egs. (21) and (22); thus, we obtain the following:
05 0G 0§ 0G

L(ﬁ'fZ):a_ﬁa_ﬁ_a_ﬁa_ﬁ_O (66)

G(fi,f2) =0 (67)

3.1.6. The point of closest approach between parabolic and hyperbolic conic sections (k, = 2,
k, =3)

2a
S(fi, Hy) = 2—%{—62 (a + ysinf,) — sinhH,\/ e, — 1(B + {sinf;)
1+ cosf;
+ coshH,(a + ysinfl)} +a?, (eycoshH, — 1)? (63)
1
—=q1%(cos2 f; — 3) seczli
2 2
3 1 2
G(fi, Hy) = <2%) <tan% + gtan3 %) - /a‘u_z (ezsinhH, —Hy) +7 — 1, =0 (69)

Here, Egs. (68) and (69) represent the objective function (S) and constraint (G), respectively,
between parabolic and hyperbolic orbits. The basic equations of our special hyperbolic and
parabolic orbit systems are as follows:

as f f i

5 et () i () rrter cn-arsmom(@)
aS 2 2 . ]
A = 2a,%e,* shinHycoshH, + ay(—2aze, + aé; +y ny)shinH, (1)

— agy/ e2 — 1(Bé; + { ny)coshH,
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G _ a3 1 hH
el —7( — e,cosh(H,)) (72)

STG = %sec4 <%> (73)
1

We solve the system of Egs. (70), (71), (72), and (73) using Egs. (21), (22), (23), and (24);
thus, we obtain the following:

Lhy 23S 9635 36 _
o) = 5 a1, ~ om0, - 74

G(fi,Hy) = 0 (75)

3.1.7. The point of closest approach between hyperbolic and elliptic conic sections (k4 = 3,
ko=1)

S(Hy,Ey) = aja, {—el(acosEz — ae, + BJ1 — e?,sinE,) + ey (ysinhHy/ e, ? — 1
— acoshH,) + cosE,(acoshH; — ysinhH;\/e;? — 1) -
+ B+/1 — ey?sinE,coshHy — (/e ? — 1sinhH1} (76)

+ a;?(e;coshHy — 1)% + a,%(eycosE, — 1)2

—a 3 a 3
G(Hy,Ey) = ’ ‘ul (e;sinh(Hy) — Hy) — ’%(Ez —eysinEy))+ 1, —1,=0 (77)

Here, Egs. (76) and (77) represent the objective function (S) and constraint (G), respectively,
between hyperbolic and elliptic orbits. The basic equations of our special hyperbolic and
elliptic orbit systems are as follows:
as . .
e 2a,%e,% shinH, coshH; + a;(—2a;e; + a&, + B n,)shinH;
1 (78)
+a;veg ? — 1(y§; +{mz)coshH,

dS ) .
— = —2a,%e ,2sinE,cos E; + a, (2a, e, —a&; —ymn,) sink,
JdE, (79)

+a, V(1 —e?;) (Bg +Tnyg) cosE,

aG 313

_0H1 =— |- _H (1 —e;coshH,) (80)
G 323

a_E'z = — (T)(l - ez(:OSEz) (81)

The system of Egs. (78), (79), (80), and (81) are solved using Egs. (21), (22), (23), and (24);
we write as follows:
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S oG0S 0G

L(Hy, E,) = - =
(Hy, E2) 3H, 9E,  0E,0H, _° (82)

G(H,E,)=0 (83)

3.1.8. The point of closest approach between hyperbolic and parabolic conic sections (k1 = 3,
ky=12)

S(Hy, f) = a2 (cosh(Hy) — e1)? + aay (cosh(Hy) — €1 sec(%)z

o fa.,  2yai/—1+ e’qpsinh(H,) 2
+ qy°sec(=)* — +a,%(—1
2 1+ cos(f3) (84)
+ e,2)sinh(H,)?+ 2Ba, (cosh(H;) — el)qztan(%)

— 2{y -1+ elquSinh(Hl)tan(%) + 4q22tan(%)2

(85)

—q.3 3
G(Hh f) = / " (e () = ) = [F2 canZ) + gean )+ - vy

=0

Here, Egs. (84) and (85) represent the objective function (S) and constraint (G), respectively,
between hyperbolic and parabolic orbits. The basic equations of our special hyperbolic and
parabolic orbits systems are as follows:

S ] ]

—— = 2a,%e,? shinH, coshH; + a;(—2a;e; + aé, + f n,)shinH,

+ a;v e ? — 1(y&, + { ny)coshH;

aS

a_fz = g,sec? (%) {Zqztan3 (%) +B& + (. — (@& + yny)tan (%)} (87)
aG 3
S = _‘% (1— escosh(H,)) (88)

aG 3

The formula in Eq. (86) is solved using Egs. (21) and (22); thus, we write as follows:

L fy 2 95 0695 06 _
1) =5, oF, o 08, 0)

G(Hy, f2) =0 (Y]
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3.1.9. The point of closest approach between two hyperbolic conic sections (k1 = 3,k, = 3)
S(Hy H,) = a?(e;coShH, —1)2 + a2 (eycoshH, — 1)2

+ aja, <coshH2 (acoshH; —ysinhH; /ef — 1) + (—acoshH;

+ ysinhH; /elz — 1)e, + sinhH,(—fcoshH; 92)
+ CsinhHl\/elz — 1)\/622 — 1+ e (—acoshH, + ae,

+ BsinhH, |eZ — 1))

3 3

d d
G(Hl, Hz) = L (81 sinhH1 - Hl) - -2 (32 sinhHZ - Hz) + 71— T1
Iz [ (93)

=0

Here, Egs. (92) and (93) represent the objective function (S) and constraint (G), respectively,
of two hyperbolic orbits. The basic equations of our special hyperbolic orbit systems are as
follows:

as ] .

—— = 2a,%e,? shinH, coshH; + a,(—2a,e; + aé, + f n,)shinH,

0H, (94)

+ a;v/e;? — 1(y&, + { ny)coshH,;
as

—— = 2a,%e,? shinH,coshH, + a; (—2aye, + aé; +y ny)shinH,
0H, (95)

—ay/ex” — 1(B& + {ny)coshH,

G _ 313 h

= | 7(1 — eycosh(H;)) (96)
G _ 323 h
E = |—- 7 (1 — eycosh(H,)) 97

The formula n Eq. (94) is solved using Egs. (21) and (22); accordingly, we write as follows:

ds oG 0dS oG

L(H,, H,) = - =
(Hy, Hy) oH, o1, oM, oM, ° (93)

G(Hy, Hy) =0 (99)

3.2. Hessian matrix derivatives

Now, we find the Hessian matrix for elliptic, parabolic, and hyperbolic conics.
028
OE,*

= —a;cosE;(Bn, — 2a, e; + aé,) — 2a%,e,%cos 2E;

—aysinE; (1 —e?)) &+ Iny)

(100)
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RN

= — a,cosE,(aé; —2a, e, + yny) — 2a’,e y%cos 2E,

9E%
—aysinEy+/ (1 —e?)(B& +{ny)
% = a;cosh(H;)(Bn, — 2a,e; + af,) + 2a,%e 1%cosh (2H,)
1
+agsinh(Hy) v/ (e1% — D&y +Ing)
;ZLI_}S = 2a,%e ,%cosh (2H,) + aycosh(Hy)(yn, — 2aze 5 + ag;)
2
+ azsinh(Hy)+/ (e 22 — 1)(BE + {ny)
os
af;,
¢, Sin (%) (2q1 tan3 (%) —tan (%) Bny aéy)+yé, +¢ le)
cos3 %
/ tan tan? (%) 1 \
@ I\(ﬂ N2 + aéz) — 6q, tan’ 5 +5 /I
) cos? ff
as
of’

qz sin (%) (Zqz tan® (%) + B¢y —tan (%) (my +aé) +¢ m)

cos (fz)
4 3
12 |/<ta1122(2> > (my + a&;) — 6q,tan? ( 2) <tan22< 22) +%

cos?

:;GZ =e (%)sin(El)
1 «’

926
0E%

N|Sh

<% sin(E,)
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(101)

(102)

(103)

(104)

(105)

(106)

(107)



vo_20(5) [

of,%

coSs (fz—l)

l§)FF

0%G ’ .
62—1-11 = [— 17615”’1}1([‘11)

92G

9%2H,
92s  9%S

0 E,0E, O0E,0E,

323
e,Sinh(H,)

= aa, (a sinE; + ycosE{\/1 — e?; )sinEz

+ a;a, (\/ 1—e?, ) {—BsinEl + (1 —e?) cosEl} cosE,

92s 92§
0f20fi 0£0f;

{ﬁ + aTan (

925  9%S
0H,0H, 0H,0H,

= a;a, {asinth —

= @1 q,Sec (%)2 Sec (];2) (( + yTan( 2)

f2

Epran(5)

fcoshHy/ (%, — 1)} sinhH,;

—aa, (coshHlsinthwl (e?; — 1) {y + {/(e?; — 1)})

%G

0%G
=0

0E0E,

RN

0 E,0 E;

RN
=0

f20f,

RN

0f10f2

RN
0

OH,0H,

OH,0H,

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

The equation systems from Eq. (100) to Eq. (117) represent the coefficients of a Hessian
matrix. We write one conic equation as an example so that the other formulas can be easily
derived; all cases are the same. Selecting the condition k; = 1 and k, = 1, use Egs. (20),
(100), and (101). The equations for an elliptic orbit are Egs. (30), (32), (33), and (34); we
calculate A (known as the Lagrange multiplier) from Eq. (24), as follows:
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3G aG
0 dE, oE,
aG 92S 926 d2%s 926
H(e,6,) = | 3E, 08 2 Y35 %  9E 0B, | 9EOL, (118)
aG 32 2 926 928 3 926
| 0E,  OE, OF, 0E, 0E, dE, 2~ OE, *

where H (g, g,) <0, and it is a local minimum.

4. RESULTS AND DISCUSSION

In this work, we take only different cases of elliptical orbits. We compare the elliptic case
with the parabolic and hyperbolic cases, as shown in Table 1; MATLAB software is used for
comparison. These data canbe obtained from https://ssd.jpLnasa.gov/?sb_elem#legend.

First, we study the closest approach between elliptic and elliptic orbits (K; =1, K, = 1).
Table 2 demonstrates the analysis of data between two elliptical orbits, which achieve
minimum distance function, as shown in Figure 3. The validation of the local minimum (S) is
applied using the determinant of the Hessian matrix. The results are shown in Table 2 (E; and
E,. The (G) constraint was achieved, as was the objective function (S) (minimal distance
between two orbits). Moreover, in Figure 3, the black line is the constraint between two
elliptical orbits. Furthermore, (S) is defined as a global minimum.

Table 3 shows the data between elliptic and parabolic cases, which achieve minimal distance
function, as shown in Figure 4. The validation of the local minimum (S) is applied by
determination of the Hessian matrix. The results are shown in Table 3 (E; and f;). The (G)
constraint required is achieved, and the objective function (S) is determined (minimal distance
between two orbits). Besides, in Figure 4, the black line is the constraint between the two
elliptical and parabolic orbits. Furthermore, the function (S) has been defined as a global
minimum between two upper local minimums and a lower local minimum.
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Table 1. Classic orbital elements from different orbits

Rallname | ¢ | (801 A | e | (dep) | ey | PPOh P
Elliptic
l?ﬁfﬁ%ﬁl 0.0291 | 4.719 | 4.5817 | 7.9084 | 137.3 | 231.57] 2,455,007.50 | 2,456,186.60
331P/Gibbs | 0.0420 | 3.003 | 2.8773 | 9.7396 | 216.8 | 177.40| 2,455,961.50 | 2,455,283.50
Parabolic
(3(/81(9)91{80‘)’2 1 0.0053 | 142.73 | 358.3 | 78.92 | 2,451,125.10 | 2,451,122.42
(3(/81(9)%80‘)’3 1 0.0055 | 147.39 | 351.1 | 76.95 | 2,451,125.20 | 2,451,125.20
Hyperbolic
fﬁ%ﬁ%ﬁ 1.002 | 1181.3| 3.50 | 115.83 | 332.7 | 101.91| 2,451,581.50 | 2,451,408.70
fﬁﬁf&g 1.003 | 1658.4| 5.36 |104.75|223.5| 211.08| 2,451,580.50 | 2,451,786.70
158P/Kowal-LINEAR vs 331 P/Gibbs s

Figure 3. Closest approach between two Elliptic orbits (MOID)
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Table 2. Orbit analysis of elliptic with elliptic orbits

A -1.123966415967069 10~7
10°
Hessian 0 2.720730319241977 —1.407449249628583
matrix x| 2.720730319241977  0.000028815678919 —0.000027821455392
—1.407449249628583 —0.000027821455392 0.000027997751636
Eigenvalues 3.063240793691692
of Hessian 10%+ [ 0.000005462728107
matrix —3.063189442989243

Determinant

-5.125834486699852* 1013

of Hessian
matrix
E, 276.274609317199°
E, 250.177611066412°

G (constraint)

0

VS (distance)

1.68821698778736

The second case is the comparison between elliptic and parabolic orbits (k; =1 and k,=2).

Table 3. Orbit analysis of elliptic with parabolic (k; =1 and k.= 2)

A 1.6010%10~7
10°
Hessian 0 2.784247599338849 —0.001199656749179
matrix *| 2.784247599338849 —0.000001080182139 0.000000380247510

—0.001199656749179  0.000000380247510  0.000000207030237

Eigenvalues

—2.784248398043477
10%*| 0.000000207357675

VS (distance)

of Hessian
matrix 2.784247317533900
Determinant
of Hessian —1.607444186041507 « 1012
matrix
E; 207.789°
E, 119.534°
G (constraint) 0
4.830880
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Figure 4. Closest approach between elliptic and parabolic orbits (MOID)

The third case is the comparison of elliptic and hyperbolic orbits (k; =1 and k,= 3).

Table 4. Orbit analysis of elliptic and hyperbolic orbits (k; = 1 and k.= 3)

A 1.080854776120083*10~*
10°
Hessian 0 0.002665024194745 —1.05342954347067663
matrix «| 0.002665024194745  0.000000866698732 0.000001966300143
—1.053429543470676  —0.000001966300143  —0.000335155241692
Eigenvalues —2.784248398043477
of Hessian 10 %[ 0.000000207357675
matrix 2.784247317533900

Determinant

of Hessian -9.594071548339930%102°
matrix
E; 192.4844831°
E, 0.9630342904889
G (constraint) 0
VS (distance) 833.04326
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Table 4 demonstrates the data analyzed between elliptic and hyperbolic orbits, which achieve
minimum distance function, which is shown in Figure 5. The validation of the local minimum
(S) is applied using the determinant of the Hessian matrix. The results are shown in Table 4
(E, and H;). The G constraint required is achieved, and the objective function (S) is
determined (minimal distance between two orbits). In addition, this figure shows that the
black line is the constraint between the two elliptical and hyperbolic orbits. Furthermore, the
function (S) is defined as a global minimum. To sum up, the figures show the minimum
distance (MOID) between an elliptic, a parabolic, and a hyperbolic orbits, with analysis of the
equations. Furthermore, both the objective function (S) and the constraint (G) are minimized
(MOID), and the constraint of the problem is achieved. Finally, the constraint (G) is passing
through the minimum distance (MOID).

x 10"

35

!
N
(4]

Figure 5. Closest approach between elliptic with hyperbolic orbits (MOID)
5. CONCLUSIONS

In the present paper, we have developed a constrained minimization technique to determine
the point of optimal approach between two orbital conic sections, which are (elliptic—elliptic),
(elliptic—parabolic), (elliptic—hyperbolic), (parabolic—elliptic), (parabolic—parabolic),
(parabolic—hyperbolic),  (hyperbolic—elliptic),  (hyperbolic—parabolic), and (hyperbolic—
hyperbolic). The developments were considered from two points of view, namely, analytical
and computational. On the one hand, in the analytical developments, two literal expressions
for the functions (S) and (G) were developed: (i) the minimum distance equation (S); and (ii)
the constraint equation (G) for each case. Moreover, their first and second derivatives were
deduced to calculate the Hessian matrix for each case. The point of closest approach between
the conic sections of each case was obtained by solving the typical nonlinear system of
equations. We applied this algorithm to a sample of different types of comets.

76



Acknowledgements. I would like to thank Prof. M. A. Sharaf for his support and guidance
during the conduct of this research. Furthermore, I would like to thank all the members of the
undergraduate research team for their collaborative effort during data collection. I pray for
Mercy because he died while working on this article.

REFERENCES

Alfano S. (1994) Determining satellite close approaches, part 2, JANSC, Vol 42, No. 2, 143-
152.

Available from: https:/ssd.jpl.nasa.gov/?sb_elem#legend

Baluyev R.V., Kholshevnikov, K.V. (2005). Distance between two arbitrary unperturbed
orbits, Celestial Mechanics and Dynamical Astronomy,Vol. 91, No. 3-4, 287-300.

Brown. D.C. (2004) Spacecraft mision desing, American Institute of Aeronautics and
Astronauies, Inc, Washinglon DC, U.S.A. 20024-2."1R.

Denenberg E., Gurfil, P. (2016) Improvements to time of closest approach calculation.
Journal of Guidance, Control, and Dynamics, Vol. 39, No. 9, 1967-1979.

Escobal P.R. (1965) Methods of orbit determination, John Wiley.

Hoots F.R., Crawford L.L., Roehrich R.L. (1984) An analytic method to determine future
close approaches between satellites, Celestial Mechanics, Vol. 33, No. 2, 143-158.

Junkins J.L. (2004) Optimal estimation of dynamic systems, CRC Press LLC, London, New
York, Washington, D.C.

Kholshevnikov K.V., Vassiliev N.N. (1999) On the distance function between two Keplerian
elliptic orbits, Celestial Mechanics and Dynamical Astronomy,Vol. 75, No. 2, 75-83.

L J., Wang R.L., Zhang H.B., Xiao Z. (2004) Space debris collision prediction research,
Chinese Journal of Space Science, Vol. 24, No. 6), 462-4609.

Moulton F.R. (1960) An introduction celestial mechanics, New Y ork.

Sharaf ML.A., Sharaf, A.A. (1997) Closest approach in universal variables, Celestial
Mechanics and Dynamical Astronomy, Vol. 69, No. 4, 331-346.

Vallado D.A. (2013) Fundamentals of astrodynamics and applications, Microcosm Press,
Hawthorne, CA, USA.

Zheng Q.Y., Wu L.D. (2004) A computation method to warn the collision event between
space probe and debris, Acta Astronomica Sinic, Vol. 45, No. 4, 422-427.

Received: 2020-10-27

Reviewed: 2021-01-10 (undisclosed name), 2021-02-23 (E. Wnuk),
and 2021-04-28 (A. V. Devyatkin)

Accepted: 2021-06-28

77


https://ssd.jpl.nasa.gov/?sb_elem#legend

	1. Introduction
	2. Distance function
	2.1. The plane coordinates
	2.2. Transformation to the fundamental plane
	2.3. Distance and constraint functions

	3. PROBLEM FORMULATION
	3.1. The sufficient condition for the closest approach
	3.1.1. The point of closest approach between two elliptic conic sections(,𝑘-1.=1,,𝑘-2.=1)
	3.1.2. The point of closest approach between elliptic and parabolic conic sections (,𝑘-1.=1, ,𝑘-2.=2)
	3.1.3. The point of closest approach between elliptic and hyperbolic conic sections (,𝑘-1.=1, ,𝑘-2.=3)
	3.1.4. The point of closest approach between parabolic and elliptic conic sections (,𝑘-1.=2, ,𝑘-2.=1)
	3.1.5. The point of closest approach between two parabolic conic sections (,𝑘-1.=2,,𝑘-2.=2)
	3.1.6. The point of closest approach between parabolic and hyperbolic conic sections (,𝑘-1.=2, ,𝑘-2.=3)
	3.1.7. The point of closest approach between hyperbolic and elliptic conic sections (,𝑘-1.=3, ,𝑘-2.=1)
	3.1.8. The point of closest approach between hyperbolic and parabolic conic sections (,𝑘-1.=3, ,𝑘-2.=2)
	3.1.9. The point of closest approach between two hyperbolic conic sections ,(𝑘-1.=3, ,𝑘-2.=3)

	3.2. Hessian matrix derivatives

	4. Results and discussion
	References

