PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Kinetics of Grain Growth in 718 Ni-Base Superalloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Kinetyka wzrostu ziaren w nadstopie niklu 718
Języki publikacji
EN
Abstrakty
EN
The Haynes® 718 Ni-base superalloy has been investigated by use of modern material characterization, metallographic and heat treatment equipment. Grain growth annealing experiments at temperatures in the range of 1050 – 1200 oC (1323–1473K) for time durations in the range of 20 min-22h have been conducted. The kinetic equations and an Arrhenius-type equation have been applied to compute the grain-growth exponent n and the activation energy for grain growth, Qg, for the investigated alloy. The grain growth exponent, n, was computed to be in the range of 0.066-0.206; and the n values have been critically discussed in relation to the literature. The activation energy for grain growth, Qg, for the investigated alloy has been computed to be around 440 kJ/mol; and the Qg, data for the investigated alloy has been compared with other metals and alloys and ceramics; and critically analyzed in relation to our results.
PL
Nadstop na bazie niklu Haynes ® 718 badano przy użyciu nowoczesnych urządzeń do charakterystyki materiałów, metalografii i obróbki cieplnej. Przeprowadzono badania wzrostu ziarna podczas wyżarzania w zakresie temperatur 1050 - 1200 ° C (1323-1473K) w czasie trwania od 20 minut do 22 godzin. Równania kinetyczne i równanie typu Arrheniusa zostały zastosowane do obliczania wykładnika wzrostu ziarna n oraz energii aktywacji wzrostu ziarna, Qg, dla badanego stopu. Obliczona wartość wykładnika wzrostu ziarna, n, mieści się w zakresie od 0.066 do 0.206 i została krytycznie przedyskutowana w odniesieniu do literatury. Obliczona energia aktywacji wzrostu ziaren, Qg, wynosi dla badanego stopu na około 440 kJ / mol. Dane Qg dla badanego stopu porównywano z danymi dla innych metali, stopów i ceramiki oraz krytycznie analizowano w odniesieniu do naszych wyników.
Twórcy
autor
  • Department Of Engineering, Nilai University, Nilai, 71800 Negeri Sembilan, Malaysia
autor
  • Department Of Mechanical Engineering, University Of Malaya, 50603 Kuala Lumpur, Malaysia
  • Department Of Mechanical Engineering, University Of Malaya, 50603 Kuala Lumpur, Malaysia
autor
  • Department Of Mechanical Engineering, University Of Malaya, 50603 Kuala Lumpur, Malaysia
autor
  • Department Of Mechanical Engineering, University Of Malaya, 50603 Kuala Lumpur, Malaysia
Bibliografia
  • [1] J. Tiley, G. B. Viswanathan, R. Srinivasan, R. Banerjee, D. M. Dimiduk, H. L. Fraser, Coarsening kinetics of y’ precipitates in the commercial nickel base Super-alloy René88DT, Acta Mater. 57(8), 2538-2549 (2009).
  • [2] K. Y. Cheng, C. Y. Jo, D. H. Kim, T. Jin, Z. Q. Hu, Influence of local chemical segregation on the y’ directional coarsening behavior in single crystal superalloy CMSX-4, Mater. Charact. 60(3) 210-218 (2009).
  • [3] P. C. Xia, J. J. Yu, X. F. Sun, H. R. Guan, Z. Q. Hu, Influence of thermal exposure on y’ precipitation and tensile properties of DZ951 alloy; Mater. Charact. 58(7), 645-651 (2007).
  • [4] K. Song, and M. Aindow, Grain growth and particle pinning in a model Ni-based superalloy, Mat. Sci. & Eng. A 479, 365-372 (2008).
  • [5] H. J. Penkalla, J. Wosik, A. Czyrska-Filemonowicz, Quantitative microstructural characterisation of Ni-base superalloys, Mater. Chem & Phys. 81(2-3), 417-423 (2003).
  • [6] H. Monajati, M. Jahazi, R. Bahrami, S. Yue, The influence of heat treatment conditions on y’ characteristics in UdimetR 720, Mat. Sci. Eng. A 373, 286-293 (2004).
  • [7] R. S. Moshtaghin, and S. Asgari, Growth kinetics of y’ precipitates in superalloy IN-738LC during long term aging, Materials & Design 24(5), 325-330 (2003).
  • [8] C. Slama, and M. Abdellaoui, Structural characterization of the aged Inconel 718, J. Alloysand Compounds 306(1-2), 277-284 (2000).
  • [9] V. Randle, B. Ralph, Interactions of grain boundaries with coherent precipitates during grain growth, Acta Metallurg. 34(5), 891-898 (1986).
  • [10] G. Tian, C. Jia, J. Liu, and B. Hu, Experimental and simulation on the grain growth of P/M nickel-base superalloy during the heat treatment process, Materials & Design 30(3), 433-439 (2009).
  • [11] Z. Huda, Influence of Particle Mechanisms on the Kinetics of Grain Growth in a P/M Superalloy, Mater. Scie. Forum 467-470, 985-990 (2004).
  • [12] Z. Huda, and B. Ralph, Kinetics of Grain Growth in P/M IN-792 Superalloy’, Mater. Charact. 25(2), 211-220 (1990).
  • [13] B. Radhakrishnan, and R.G. Thompson, Kinetics of Grain Growth in the Weld HAZ of Alloy 718, Metallurg. Trans A 24A, 2773-2785 (1993).
  • [14] Z. Huda, Metallurgical Failure Analysis for a Blade Failed in a Gas-Turbine Engine of a Power Plant, Materials and Design 30, 3121-3125 (2009).
  • [15] Z. Huda, Development of Heat Treatment Process for a P/M Superalloy for Turbine Blades, Materials and Design 28(5), 1664-1667 (2007).
  • [16] Z. Huda, Development of Design Principles for a Creep-Limited Alloy for Turbine Blades’, J. Mater. Eng. & Perf. 4(1), 48-53 (1995).
  • [17] C. T. Sims, N. S. Stoloff, and W. C. Hagel, Superalloys II, John Wiley & Sons (1987).
  • [18] L. Xiaoa, D. L. Chenb, and M. C. Chaturvedia, Effect of boron and carbon on thermomechanical fatigue of IN 718 superalloy: Part I. Deformation behavior, Mater. Sci. Eng. A 437, 157-171 (2006).
  • [19] R. E. Hummel, Understanding Materials Science: History, Properties, Applications. Springer, USA (2004).
  • [20] C. Suryanarayana, Mechanical Alloying and Milling, CRC Press, USA (2004).
  • [21] Z. Hudaand T. Zaharinie, Kinetics of Grain Growth in2024-T3: an Aerospace Aluminum Alloy, J. Alloysand Compounds 478, 128-132 (2009).
  • [22] B. Ralph, K. B. Shim, Z. Huda, J. Furley, M. Edirisinghe, Effect of Particles and Solutes on Grain-Boundary Migration and Grain Growth, Materials Science Forum 94-96, 129-140 (1992).
  • [23] Z. Huda, Grain Growth in a Powder-Formed Nickel-base Su-peralloy, Ph.D Thesis (1991) Brunel University of West London, U.K.
  • [24] P. Cotterill, and P. R. Mould, Recrystallization and Grain Growth in Metals, University of Surrey Press, UK (1976).
  • [25] Z. Huda, T. Zaharinie, and S. H. Islam, Effects of Annealing Parameters on Grain Growth Behavior of Haynes 718 Superalloy, Int. Journal of Physical Sci. 6(30), 7073-7077 (2011).
  • [26] C. T. Simpson, K. T. Aust, and W. C. Winegard, The four stages of grain growth, Met. and Mater. Trans. B 2(4), 987-993 (1971).
  • [27] T. Takasugi, and O. Izumi, Recrystallization and grain growth of Co3Ti, Acta Metallurg. 33, 49-58 (1985).
  • [28] B. Cherukuri, R. Srinivasan, S. Tamirisakandala, D. B. Miracle, The influence of trace boron addition on grain growth kinetics of the beta phase in the beta titanium alloy Ti-15Mo-2.6Nb-3Al-0.2Si, Scripta Materialia 60(7), 496-499 (2009).
  • [29] D. Eliezer, E. TalGutelmacher, C. E. Cross, Th. Boellinghaus, Hydrogen trapping in β-21S titanium alloy, Mater. Sci. Eng: A 421(1-2), 200-207 (2006).
  • [30] V. Randle, B. Ralph, and N. Hansen, Grain growth in crystalline materials. Annealing Processes – Recovery, Re-crystallization and Grain Growth, in Proc. 7th Risø Int. Symp. 1-8 (1986).
  • [31] T. G. Nieh, and J. Wadsworth, Biaxial gas-pressure forming of a superplastic Al2O3/YTZP, J. Amer Ceramic Soc, Vol. 72, Page 1469 (1989).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff04f332-84b3-40c7-b2d3-c601fb995746
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.