PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gas temperature distribution in the evaporator of GTM400 turbojet engine

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of measurements carried out in the GTM400 turbojet engine with a changed combustion chamber geometry. The available publications lack more detailed information on the temperature distribution in evaporators, which are part of the combustion chamber of small turbojet engines. As the results of the analysis showed, this is not simple, because the research takes place in very small spaces. The reason for the work carried out is to check whether the temperatures in the evaporators are high enough. This allows to determine whether the fuel is evaporating properly. Therefore, an analysis was carried out to determine the temperature distribution in the area of the inlet to the evaporator. Thanks to the modification of the combustion chamber, it was possible to measure temperatures, which in the engine literature are simulated using numerical analysis. The analysis described in the paper is one of the stages of preparing the engine for operation with hydrogen. It is modified as part of a project to build a hybrid engine burning traditional JET-A1 fuel and alternative fuel, i.e. hydrogen.
Słowa kluczowe
Rocznik
Strony
185--196
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Poznan University of Technology, Faculty of Environmental Engineering and Energy, Piotrowo 3, 61-138 Poznań, Poland
Bibliografia
  • [1] Gieras M.: Miniature Turbojet Engines. Oficyna Wyd. PW, Warszawa 2016 (in Polish).
  • [2] Nelson R.J., Dix M.D.: Development of engines for unmanned air vehicles: some factors to be considered. Institute for Defense Analyses, Alexandria 2003.
  • [3] Goraj Z., Frydrychewicz A., Świtkiewicz R., Hernik B., Gadomski J., GoetzendorfGrabowski T., Figat M., Suchodolski S., Chajec W.: High altitude long endurance unmanned aerial vehicle of a new generation – a design challenge for a low cost, reliable and high performance aircraft. Bull. Pol. Acad. Sci. Tech. Sci. 52(2004), 3, 173–194.
  • [4] Barnhart R.K., Hottman S.B., Marshall D.M., Shappee E.: Introduction to Unmanned Aircraft Systems. Taylor & Francis, 2012.
  • [5] Dinc A.: NOx emissions of turbofan powered unmanned aerial vehicle for complete flight cycle. Chin. J. Aeronaut. 33(2020), 6, 1683–1691.
  • [6] Technical Report, Ver. 0.1: Unmanned Aircraft System (UAS) Service Demand 2015 – 2035. United States Air Force 2014.
  • [7] Turkay M., Gürgen S., Keskin G., Durmus S.: Research on applications of miniturbojet and turbojet engined military UAVS. In: Proc. 21st Int. Conf. AFASES, Scientific Research and Education in the Air Force, Braşov 2019.
  • [8] Kelly C., McCain C., Bertels J., Weekley S., Moody K., Utley L., Copher G., Totty C., Booth T., Spaulding L., Jdiobe M., Rouser K.: Design of a geared turbofan module for small unmanned aircraft applications. AIAA Scitech Forum 2021. doi:10.2514/6.2021-0262
  • [9] Kreps S.E.: Drones. Introduction. Technologies. Usage. PWN, Warszawa 2019 (in Polish).
  • [10] Becmer D., Skorupka D., Duchaczek A.: Development trends in unmanned aerial systems. Wojskowy Instytut Techniczny Uzbrojenia 136(2015), 4, 19–40 (in Polish).
  • [11] Becmer D.: Class I-II unmanned aerial systems in the future combat system. Zeszyty Naukowe Wyższej Szkoły Oficerskiej Wojsk Lądowych 143(2007), 1, 34–44 (in Polish).
  • [12] Łapucha R.: Combustion Chambers of Turbine-jet Engines: Processes, Calculations, Research. Wydawn. Naukowe Instytutu Lotnictwa, Warszawa 2004 (in Polish).
  • [13] Sieniawski J.: Criteria and Methods of Assessment of Aircraft Turbine Engine Components. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 1995 (in Polish).
  • [14] Pawlak W.I.: Turbine Jet Engine: Simulation, Control and Monitoring Elements. Wydawnictwo Naukowe Instytutu Lotnictwa, Warszawa 2011 (in Polish).
  • [15] Benets D.J., Mockler T., Maldonado J., Harp J.L., King J.F., Schmitz P.C.: Propulsion systems for very high altitude subsonic unmanned aircraft. NASA, Aerospace Power Systems’98, Williamsburg, 21-23, Apr. 1998 (NASA TM-1998-20663).
  • [16] Zhang B., Song Z., Zhao F., Liu C.: Overview of propulsion systems for unmanned aerial vehicles. Energies 15(2022), 2, 455, 1–25.
  • [17] Gawron B., Białecki T.: The laboratory test rig with miniature jet engine to research aviation fuels combustion process. J. KONBiN 36(2014), 4, 79–90.
  • [18] Levy Y., Sherbaum V., Nadvany V., Nekhamkin Y.: Modified vaporizer for improved ignition in small jet engine. J. Propuls. Power 22(2006), 4, 828–834.
  • [19] Montazeri-Gh M., Fashandi S.A.M., Jafari S.: Theoretical and experimental study of a micro jet engine start-up behaviour. Technicki vjesnik–Technical Gazette 25(2018),3, 839–845.
  • [20] Levy Y.: Environmental protection: EASA noise and emissions certification. In: Proc. COSCAP-GS Conf., Dubai, 2014.
  • [21] JETPOL Tomasz Kiciński. https://jetpol.tech/ (accessed 17 May 2023).
  • [22] Czarnecki M., Orkisz M.: Preliminary design of micro scale turbojet. J. KONES Powertrain Transport 15(2008), 3, 83–87.
  • [23] Krawczyk P., Badyda K., Szczygieł J., Młynarz S.: Investigation of exhaust gas temperature distribution within a furnace of a stoker fired boiler as a function of its operating parameters. Arch. Thermodyn. 36(2015), 3, 3–14.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff01ec53-2fab-47c1-a42d-3fea5aad2db6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.