PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Palmprint recognition based on convolutional neural network-Alexnet

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (14 ; 01-04.09.2019 ; Leipzig, Germany)
Języki publikacji
EN
Abstrakty
EN
In the classic algorithm, palmprint recognition requires extraction of palmprint features before classification and recognition, which will affect the recognition rate. To solve this problem, this paper uses the convolutional neural network (CNN) structure Alexnet to realize palmprint recognition. First, according to the characteristics of the geometric shape of palmprint, the ROI area of palmprint was cut out. Then the ROI area after processing is taken as input layer of convolutional neural network. Next the PRelu activation function is used to train the network to select the best learning rate and super parameters. Finally, the palmprint was classified and identified. The method was applied to PolyU Multi-Spectral Palmprint Image Database and PolyU 2D+3D Palmprint Database, and the recognition rate of a single spectrum was up to 99.99%.
Rocznik
Tom
Strony
313–--316
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
  • School of Electronics and Information Engineering, MOE Key Lab for Intelligent Networks and Network Security, Xi’an Jiaotong University, No.28 xianning west road Xi’an, China
autor
  • School of Electronics and Information Engineering, MOE Key Lab for Intelligent Networks and Network Security, Xi’an Jiaotong University, No.28 xianning west road Xi’an, China
autor
  • School of Electronics and Information Engineering, MOE Key Lab for Intelligent Networks and Network Security, Xi’an Jiaotong University, No.28 xianning west road Xi’an, China
autor
  • Guangdong Xi'an Jiaotong University Academy. No. 3, Daliangshuxiang East Road Foshan, China
Bibliografia
  • 1. Jain A. K., Ross A., Prabhakar S, “An introduction to biometric recognition,” IEEE Transactions on Circuits & Systems for Video Technology, vol.14, pp.4-20, Jan. 2004. http://dx.doi.org/10.1109/TCSVT.2003.818349
  • 2. Unar J A, Seng W C, Abbasi A,“A review of biometric technology along with trends and prospects,” Pattern Recognition, vol.47,pp.2673-2688, August. 2014.http://dx.doi.org/10.1016/j.patcog.2014.01.016
  • 3. Kong A, Zhang D, Kamel M, “A survey of palmprint recognition,” Pattern Recognition, 2009, vol.42, pp.1408-1418, July. 2009.http://dx.doi.org/10.1016/j.patcog.2009.01.018
  • 4. Wu Y P, Tian J W, Xu D, et al. “Palmprint Recognition Based on RB K-means and Hierarchical SVM,” International Conference on Machine Learning & Cybernetics, 2007. http://dx.doi.org/10.1109/ICMLC.2007.4370778
  • 5. Kumar A, Bhargava M, Gupta R, et al. “Palmprint Authentication Using Pattern Classification Techniques,” International Conference on Swarm, 2011.http://dx.doi.org/10.1109/CIS.2007.106
  • 6. Li, Y.f, and Y. Zhang. "Palmprint recognition based on weighted fusion of DMWT and LBP," International Congress on Image & Signal Processing, 2011. http://dx.doi.org/10.1109/CISP.2011.6100392
  • 7. Jia W, Gui J, Hu R X,”Palmprint Recognition Using Kernel Spectral Regression Discriminant Analysis and HOG Representation,” International Workshop on Emerging Techniques & Challenges for Hand-based Biometrics, 2010. http://dx.doi.org/10.1109/ETCHB.2010.5559288
  • 8. Hong D, Liu W, Jian S,”A novel hierarchical approach for multispectral palmprint recognition,” Neurocomputing, vol.151, pp.511-521, March 2015 http://dx.doi.org/10.1016/j.neucom.2014.09.013
  • 9. Krizhevsky A, Sutskever I,Hinton G E,“Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, pp.1097-1105, January 2012. http://dx.doi.org/10.1145/3065386
  • 10. Wang M, Deng W, “Deep face recognition: A survey,” arXiv preprint https://arxiv.org/abs/1804.06655, 2018. http://dx.doi.org/10.1109/SIBGRAPI.2018.00067
  • 11. Jalali A, Mallipeddi R, Lee M,” Deformation Invariant and Contactless Palmprint Recognition Using Convolutional Neural Network,” International Conference on Human-agent Interaction, 2015. http://dx.doi.org/10.1145/2814940.2814977
  • 12. Zhang, D.; Kong, W.; You, J.; Wong, M,”Online palmprint identification,” IEEE Trans. Patt. Anal. Mach. Intell, vol.25, pp. 1041–1049, Sept. 2003. http://dx.doi.org/10.1109/TPAMI.2003.1227981
  • 13. He K, Zhang X, Ren S, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,”2015 IEEE International Conference on Computer Vision (ICCV). http://dx.doi.org/10.1109/ICCV.2015.123
  • 14. W. Li, D. Zhang, L. Zhang, G. Lu, and J. Yan, " 3-D Palmprint Recognition with Joint Line and Orientation Features, "IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol.41,pp.274-279, March 2011. http://dx.doi.org/10.1109/TSMCC.2010.2055849
  • 15. David Zhang, Zhenhua Guo, Guangming Lu, etc., "An Online System of Multi-spectral Palmprint Verification", IEEE Transactions on Instrumentation and Measurement, vol. 59, pp. 480-490, Feb. 2010. http://dx.doi.org/10.1109/tim.2009.2028772
Uwagi
1. This work is supported by National Natural Science Foundation (No. 61673316), and Major Science and Technology Project of Guangdong Province (No. 2015B010104002).
2. Track 2: Computer Science & Systems
3. Technical Session: 12th International Symposium on Multimedia Applications and Processing
4. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff01a766-f9ed-4e2d-88bc-72a2a68c21b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.