PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Testing the thermal properties of the insulating structures of a flight data recorder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the problems faced during the research on the insulating structures used in the thermal shielding of flight recorders. These structures are characterised by specific properties determined by, among other aspects, their porosity. The complex and coupled heat-exchange phenomena occurring under the operating conditions of the recorders, and in numerous cases combined with mass exchange, require dedicated test methods. The paper characterises the origin of the research problem, presents a methodology for comprehensive testing of the thermal propertiesand uses the example of determining the insulating properties of the Promalight microporous structure ®-1000R. The authors focussed on thermal diffusivity tests performed by means of the oscillatory excitation method. The measurements were conducted on a test stand to determine the effect the type of gas filling had on the porous structure and the pore filling gaspressure effect on the temperature characteristics of apparent thermal diffusivity. The authors also conducted research on the structure’s resistance to direct flame exposure. The analysis of the obtained results enable recognition and characterisation of the key phenomena of heat and mass transfer; the numerical results exert a significant influence on their application.
Rocznik
Strony
244--251
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Air Force Institute of Technology, Księcia Bolesława Street No. 6, 01-494 Warszawa, Poland
  • 0000-0002-5497-5845
  • Department of Aviation, Polish Air Force University, Dywizjonu 303 Street No. 35, 08-530 Dęblin, Poland
  • Air Force Institute of Technology, Księcia Bolesława Street No. 6, 01-494 Warszawa, Poland
  • Air Force Institute of Technology, Księcia Bolesława Street No. 6, 01-494 Warszawa, Poland
  • Air Force Institute of Technology, Księcia Bolesława Street No. 6, 01-494 Warszawa, Poland
Bibliografia
  • 1. Ångström AJ. Neue Methode, das Warmeleitungsvermogen der Korper zu Bestimmen. Annalen der Physic und Chemie. 1861;114:513-530.
  • 2. Ariaki N, Tang DW, Makino A, Hashimoto M, Sano T. Transient Characteristics of Thermal Conduction in Dispersed Composites. Int JThermophys. 1998;19(1):1239-1251.
  • 3. Belling JM, Unsworth J. Modified Ångström‘s method for measure-ment of thermal diffusivity of materials with low conductivity. Rev.Sci. Instrum. 1987;58(6):997-1002
  • 4. Dagan G. Effective, equivalent and apparent properties of heteroge-neous media. H. Aref and J.W. Philips (eds.), Mechanics for a New Millenium, Kluwer Academic Publishers, 2001; 473-486
  • 5. Ebert HP, Braxmeier S, Reichenauer G, Hemberger F, Lied F, Wein-rich D, Fricke M. Intercomparison of Thermal Conductivity Measure-ments on a Nanoporous Organic Aerogel. Int. J. Thermophys. 2021;42(21):1-18.
  • 6. EuroCAE ED 112. Minimum operational performance specification for crash protected airborne recorder systems, Revision A Septem-ber 1. 2013.
  • 7. Etex Industry. Promat Technical Data Sheet. Promalight®. 2022. Available from:www.promat-industry.com
  • 8. Goual MS, Bali A, Quéneudec M. Effective thermal conductivity of clayey aerated concrete in the dry state: experimental results and modeling. J. Phys. D, Applied Physics. 1999;32:3041-3046.
  • 9. Grimvall G. Thermophysical Properties of Materials. Amsterdam: Elsevier Science Publish-ers B.V.; 1986. p.347
  • 10. Jakielaszek Z, Panas AJ, Nowakowski M, Klemba T, Fikus B. Evalu-ation of numerical modeling application for the crash test planning of the catastrophic Flight Data Recorder. J. Mar. Eng.Technol. 2017;16(4):319-325
  • 11. Kanit T, N’Guyen F, Forest S, Jeulin D, Reed M, Singleton S. Appar-ent and effective physical properties of heterogenous materials: Rep-resentativity of samples of two materials from food industry. Comput Methods Appl Mech Engi, 2006;195:3960 – 3982.
  • 12. Maglić KD, Cezairliyan A, Peletsky VE (Eds.).Compendium of Ther-mophysical Property Measurement Methods. Volume 1: Survey of Measurement Techniques. New York: Plenum Press. 1984.
  • 13. Maglić KD, Cezairliyan A, Peletsky VE. Compendium of Thermo-physical Property Measurement Methods. 1992 Vol. 2: Recommend-ed measurement Techniques and Practices. New York: Plenum Press 1992,
  • 14. NO-16-A200. Wojskowe statki powietrzne, Pokładowe rejestratory katastroficzne, Wymagania i badania [Military aircraft, On-board ca-tastrophic recorders, Requirements and tests] 2006.
  • 15. McNaughton JL, Mortimer CT. Differential Scanning Calorimetry. IRS. Physical Chemistry Series 2 Vol.10. London: Butterworths; Norwalk: reprinted by Perkin-Elmer Corp. 1975; 44.
  • 16. Ostoja-Starzewski M. Mechanics of Random Media. Warszawa: Military University of Technology 2017.
  • 17. Panas AJ. B-spline approximation of DSC data of specific heat of NiAl and NiCr alloys. Arch Thermod. 2003;24:47–65.
  • 18. Panas AJ, Panas D. DSC investigation of binary iron-nickel alloys. High Temp. – High Press 2009;38(1):63-78.
  • 19. Panas AJ. Comparative-Complementary Investigations of Thermo-physical Properties – High Thermal Resolution Procedures In Prac-tice. Zmeskal, O. et al. (eds). Thermophysics. Brno University of Technology. Faculty of Chemistry. 2010; 218-235.
  • 20. Panas AJ. IR Support of Thermophysical Property Investigation. Medical and Advanced Technology Materials Study. Prakash, R.V. (Ed.). Infrared Thermography. InTech (Rijeka). 2012;65-90.
  • 21. Panas AJ, Fikus B, Płatek P, Kunce I, Dyjak S, Michalska-Domanska M, Witek K, Kuziora P, Olejarczyk A, Jaroszewicz L, Polański M. Pressurised-cell test stand with oscillating heating for investigation heat transfer phenomena in metal hydride beds. Int. J. Hydrogen En-ergy. 2016;41:16974-16983.
  • 22. Panas AJ, Błaszczyk J, Dudziński A, Figur K, Foltyńska A, Krupińska A, Nowakowski M. Badania wpływu temperatury na zmiany właści-wości cieplnych i mechanicznych osnowy lotniczego konstrukcyjnego materiału kompozytowego. Mechanika w lotnictwie ML-XVII. tom II. Warszawa: PTMTS 2016.
  • 23. Pietrak K, Wiśniewski ST. A review of models for effective thermal conductivity of composite materials. J Pow Technol. 2015;95(1): 14-24.
  • 24. Reif F. Fizyka statystyczna. Warszawa: PWN. 1971; 394.
  • 25. Wendlandt WW. Thermal Analysis. 3rd ed. New York: John Willey & Sons. 1986; 815.
  • 26. Wiśniewski S, Wiśniewski T. Wymiana ciepła. Warszawa:WNT. 2000; 445.
  • 27. Friedrich K, Fakirov S, Zhang Z. Czigány T. Discontinuous basalt fibre-reinforced hybrid composite. Polymer composites: from nano- to macro scale. 2005;309-328.
  • 28. Szczepaniak R, Kozun G, Przybylek P, Komorek A, Krzyzak A, Woroniak G. The effect of the application of a powder additive of a phase change material on the ablative properties of a hybrid compo-site. Compos Struct. 2021;256:113041. https://doi.org/10.1016/j.compstruct.2020.113041
  • 29. Krzyżak A, Kucharczyk W, Gąska J, Szczepaniak R. Ablative test of composites with epoxy resin and expanded perlite. Compos Struct. 2018;202:978-987. https://doi.org/10.1016/j.compstruct.2018.05.018
  • 30. Przybyłek P, Komorek A, Szczepaniak R. The Influence of Metal Reinforcement upon the Ablative Properties of Multi-Layered Com-posites.Adv SciTechnol Res J. 2023;17(2).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-feff20a4-3e5d-49b6-ab8a-63ef91ab2f13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.