Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
W niniejszej pracy przedstawione zostały wyniki badań meteorytów i próbek biologicznych, przeprowadzonych w ostatnim czasie w kierowanym przeze mnie Laboratorium Spektroskopii Mössbauerowskiej. Badania te dotyczyły między innymi opracowania nowej metody pozwalającej na dokonywanie wstępnej klasyfikacji chondrytów zwyczajnych. Równolegle do badań dotyczących meteorytów zostało zaproponowane użycie spektroskopii mössbauerowskiej do badania próbek biologicznych. Widma mössbauerowskie chondrytów zwyczajnych składają się z dwóch dubletów ze względu na obecność żelaza paramagnetycznego w oliwinach i piroksenach oraz dwóch sekstetów pochodzących od magnetycznie uporządkowanego żelaza obecnego w fazach metalicznych i troilicie. Powierzchnie spektralne różnych faz mineralogicznych w meteorytach, określone przez zastosowanie spektroskopii mössbauerowskiej, są proporcjonalne do liczby atomów żelaza w danej fazie mineralogicznej. Ta właściwość widm mössbauerowskich stanowiła podstawę do skonstruowania metody klasyfikacji chondrytów zwyczajnych. Metoda ta wykorzystuje pola powierzchni spektralnych widm mössbauerowskich, które analizowane są za pomocą wielowymiarowej analizy dyskryminacyjnej i odległości Mahalanobis. Metoda ta nosi nazwę 4M i pozwala określić prawdopodobieństwo przynależności chondrytu zwyczajnego do danego typu - H, L lub LL. Spektroskopia mössbauerowska nie jest rutynowo stosowana do oznaczania stężenia żelaza. Ponieważ jednak ta metoda nie wymaga wstępnej obróbki próbek przed pomiarem, może mieć ona ogromne znaczenie dla oceny stężenia żelaza w próbkach, które można następnie wykorzystać do dalszych badań. Próbki biologiczne są tego dobrym przykładem. Uważa się, że żelazo może odgrywać ważną rolę w neurodegeneracji. W pracy przedstawione zostały wyniki badań porównawczych obszarów ludzkiego mózgu (kontrolnych i patologicznych), przeprowadzonych za pomocą technik spektroskopii mössbauerowskiej i obrazowania metodą rezonansu magnetycznego. Spektroskopia mössbauerowska wykazała wyższe stężenie żelaza w atypowym parkinsonizmie (nazywanym postępującym porażeniem nadjądrowym) w obszarach mózgu takich jak istota czarna (substantia nigra) oraz gałka blada (globus pallidus) w stosunku do próbek stanowiących grupę kontrolną. W pozostałych chorobach neurodegeneracyjnych nie zarejestrowano wzrostu stężenia żelaza w tkankach mózgowych. Ze względu na fakt, że określenie roli żelaza może wnieść bardzo wiele w zrozumienie mechanizmów powstawania i rozwoju chorób neurodegeneracyjnych, badania mössbauerowskie próbek mózgowych stanowią ciekawy i perspektywiczny kierunek badań, który wymaga przeprowadzenia dalszych pomiarów i analiz.
This work presents the recent research results related to meteorites and biological samples conducted in the Mössbauer Spectroscopy Laboratory led by the Author. These studies concerned, among others, the development of a new method allowing for the preliminary classification of ordinary chondrites. Parallel to the research on meteorites, it was proposed to use Mössbauer spectroscopy to study biological samples. The Mössbauer spectra of ordinary chondrites consist of two doublets due to the presence of paramagnetic iron in olivines and pyroxenes and two sextets derived from magnetically ordered iron present in metallic and troilite phases. The spectral areas of various mineralogical phases in meteorites; determined by the use of Mössbauer spectroscopy; are proportional to the number of iron atoms in this mineralogical phase. This property of the Mössbauer spectra formed the basis for constructing a method for classifying ordinary chondrites. This method uses the spectral surface areas of the Mössbauer spectra, which are analysed using multidimensional discriminant analysis and Mahalanobis distances. This method is called 4M and allows one to determine the probability of belonging to one of the types of ordinary chondrites - H, L or LL. Mössbauer spectroscopy in not routinely used to determine iron concentration. However, as this method does not require pre-treatment of samples prior to measurements, it can be of great importance for assessing iron in samples that can then be used for further testing. Here, biological samples are a good example. It is believed that iron can play an important role in neurodegeneration. Thus, the work presents the results of comparative studies of areas of the human brain (control and pathological) carried out using Mössbauer spectroscopy techniques and magnetic resonance imaging. Mössbauer spectroscopy showed a higher concentration of iron in atypical parkinsonism (called progressive supranuclear palsy) in areas of the brain such as substantia nigra and globus pallidus compared to control group samples. In other neurodegenerative diseases, no increase in iron concentration in brain tissues was recorded. Due to the fact that determining the role of iron can contribute a lot to understanding the mechanisms of the formation and development of neurodegenerative diseases, Mössbauer studies of brain samples are an interesting direction of research that requires further measurements and analyses.
Rocznik
Tom
Strony
3--115
Opis fizyczny
Bibliogr. 167 poz., rys., tab., wykr.
Twórcy
autor
- Politechnika Warszawska, Wydział Fizyki
Bibliografia
- 1. Encyklopedia fizyki współczesnej, PWN, Warszawa 1983 (A. Hrynkiewicz „Zjawisko Mössbauera”).
- 2. Pound R.V., Rebka Jr G.A. (1960), Apparent weight of photons, Physical Review Letters, 4(7), 337.
- 3. Issak G.R. (1960), Application to relativity, Physics Bulletin, 21(6), 255.
- 4. Duda P., Rzepecka P., Jakubowska M., Woźniak M., Karwowski Ł., Gałązka-Friedman J. (2017), Badania mössbauerowskie siarczków żelaza w chondrytach zwyczajnych typu LL, Acta Societatis Metheoriticae Polonorum, 8, 30-39.
- 5. Duda P., Olrzyńska M., Szewczak P., Zielińska U., Bogusz P., Woźniak M., (2018), Wstępne wyniki pomiarów mössbauerowskich meteorytu Pułtusk przeprowadzone w warunkach standardowych oraz z dużą rozdzielczością, Acta Societatis Metheoriticae Polonorum, 9, 42-47.
- 6. Duda P., Kazulo P., Setniewski A., Bogusz P., Woźniak M. (2018), Wstępne wyniki pomiarów mössbauerowskich meteorytu Pułtusk otrzymanych w temperaturze pokojowej (300 K) oraz temperaturze ciekłego azotu (80 K), Acta Societatis Metheoriticae Polonorum, 9, 48-53.
- 7. Jakubowska M., Buczek A., Gwiździel K., Djellouli K., Nowak F., Woźniak M., Duda P. (2019), Badania mössbauerowskie trzech chondrytów zwyczajnych typu H i trzech chondrytów zwyczajnych typu LL - wyznaczanie niepewności powierzchni spektralnych, Acta Societatis Metheoriticae Polonorum, 10, 34-39.
- 8. Jakubowska M., Czarnecki A., Robak M., Zagrobelna A., Bogusz P., Woźniak M., Duda P., (2019), Badania mössbauerowskie 3 chondrytów zwyczajnych typu L (Beni M’hira, Hyattville, Saratov) - wyznaczanie niepewności powierzchni spektralnych, Acta Societatis Metheoriticae Polonorum, (10), 29-33.
- 9. Jakubowska M., Rzepecka P., Duda P., Woźniak M., Gałązka-Fridman J. (2017), Badania mössbauerowskie chondrytów zwyczajnych typu H potwierdzają stopień ich zwietrzenia określony za pomocą skali W, Acta Societatis Metheoriticae Polonorum, 8, 63-72.
- 10. Karwowski L., Brzozka K., Przylibski T.A., Duda P., Gorka B., Gawronski M., Luszczek K., (2018), Mössbauer Studies of Fusion Crust of the Soltmany Meteorite, Acta Physica Polonica A, 134(5), 1076-1079.
- 11. Gałązka-Friedman J., Woźniak M., Duda P., Rzepecka P., Jakubowska M., (2017), Mössbauer spectroscopy - a useful method for classification of meteorites?, Hyperfine Interactions, 238(1), 67.
- 12. Gałązka-Friedman J., Woźniak M., Duda P., Jakubowska M., Bogusz P., Karwowski Ł. (2019), Próby klasyfikowania chondrytów zwyczajnych przez zastosowanie spektroskopii mössbauerowskiej, Acta Societatis Metheoriticae Polonorum, 10, 23-28.
- 13. Woźniak M., Gałązka-Friedman J., Duda P., Jakubowska M., Rzepecka P., Karwowski Ł., (2019), Application of Mössbauer spectroscopy, multidimensional discriminant analysis and Mahalanobis distance for classification of equilibrated ordinary chondrities, Meteoritics & Planetary Science, 54(8), 1828-1839.
- 14. Gałązka-Friedman J., Woźniak M., Bogusz P., Jakubowska M., Karwowski Ł., Duda P., (2020), Application of Mössbauer spectroscopy for classification of ordinary chondrites - different database and different methods, Hyperfine Interactions, 241(1), 20.
- 15. Bogusz P., Gałązka-Friedman J., Brzózka K., Jakubowska M., Woźniak M., Karwowski Ł., Duda P., (2019), Mössbauer spectroscopy as a useful method for distinguishing between real and false meteorites, Hyperfine Interactions, 241(1), 126.
- 16. Rzepecka P., Duda P., Giebułtowicz J., Sochacka M., Fridman A., Gałązka-Friedman J., (2017), An example of the application of Mössbauer spectroscopy for determination of concentration of iron in lyophilized brain tissue, Nukleonika, 62(2), 159-163.
- 17. Kuliński R., Bauminger E.R., Friedman A., Duda P., Gałązka-Friedman J., (2016), Iron in typical and atypical parkinsonism - Mössbauer spectroscopy and MRI studies, Hyperfine Interactions, 237(1), 4.
- 18. Oleniacz J., Duda P., Zych W., Grabski J (2006), Magnetic properties of metallic glasses of the type Fe 80 - x Pd x B 20 and Fe 80 - x Pt x B 20, in: ICAME 2005, Springer, Berlin-Heidelberg, 227-230.
- 19. Pietrzak T.K., Michalski P.P., Kruk P.E., Ślubowska W., Szlachta K., Duda P., Garbarczyk J.E. (2017), Nature of electronic conductivity in olivine-like glasses and nanomaterials of Li2O-FeO-V2O5-P2O5 system, Solid State Ionics, 302, 45-48.
- 20. Budzyński M., Valkov V.I., Duda P., Mitsiuk V.I., Surowiec Z., Tkachenka T.M. (2019), Magnetic state features of Mn1. 4Fe0. 6P0. 5As0. 5, Low Temperature Physics, 45(5), 509-512.
- 21. Vértes A., Korecz L., Burger K., (1979), Mössbauer Spectroscopy, Akademiai Kiado, Budapest.
- 22. Hrynkiewicz A., Wick A. (1988), on Mössbauer Spectroscopy.
- 23. Mössbauer R.L. (1958), Kernresonanzfluoreszenz von gammastrahlung in Ir 191, Zeitschrift für Physik, 151(2), 124-143.
- 24. Mössbauer R.L. (1958), Kernresonanzabsorption von gammastrahlung in Ir 191, Naturwissenschaften, 45(22), 538-539.
- 25. Gütlich P., Shröder C., Schünemann V. (2012), Mössbauer spectroscopy - an indispensable tool in solid state research, Spectroscopy Europe, 24(4), 21.
- 26. Carbucicchio M., Ciprian R. (2013), Industrial applications of Mössbauer Spectroscopy, Hyperfine Interactions, 217(1-3), 9-15.
- 27. Pound R.V., Rebka Jr G.A. (1959), Gravitational red-shift in nuclear resonance, Physical Review Letters, 3(9), 439.
- 28. Pound R.V., Snider J.L. (1964), Effect of gravity on nuclear resonance, Physical Review Letters, 13(18), 539.
- 29. Friedman Y., Nowik I. (2012), Testing Einstein’s time dilation under acceleration using Mössbauer spectroscopy, Physica Scripta, 85(6), 065702.
- 30. Fluck E., Kerler W., Neuwirth W. (1963), The Mößbauer effect and its significance in chemistry, Angewandte Chemie International Edition in English, 2(6), 277-287.
- 31. Greatrex R., Greenwood N.N. (1969), Mössbauer spectra, structure and bonding in iron carbonyl derivatives, Discussions of the Faraday Society, 47, 126-135.
- 32. Erickson N.E., Fairhall A.W. (1965), Mössbauer spectra of iron in Na2[Fe(CO)4] and Na[Fe3(CO)11H] and comments regarding the structure of Fe3(CO)12, Inorganic Chemistry, 4(9), 1320-1322.
- 33. Farmery K., Kilner M., Greatrex R., Greenwood N.N (1969), Structural studies of the carbonylate and carbonyl hydride anions of iron, Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 2339-2345.
- 34. Dong T.Y., Cohn M.J., Hendrickson D.N., Pierpont C.G. (1985), Valence delocalization in mixed-valence 1,6’-diiodobi ferrocenium triiodide, Journal of the American Chemical Society, 107(16), 4777-4778.
- 35. Ksenofontov V., Kandpal H.C., Ensling J., Waldeck M., Johrendt D., Mewis A., …, Felser C. (2006), Verwey-type transition in EuNiP, EPL (Europhysics Letters), 74(4), 672.
- 36. Glaser T., Beissel T., Bill E., Weyhermüller T., Schünemann V., Meyer-Klaucke W., …, Wieghardt K., (1999), Electronic structure of linear thiophenolate-bridged heterotrinuclear complexes [LFeMFeL] n+(M=Cr, Co, Fe; n=1-3) : localized vs delocalized models, Journal of the American Chemistry Society, 121(10), 2193-2208.
- 37. Jüstel T., Müller M., Weyhermüller T., Kressl C., Bill E., Hildebrandt P., …, Wieghardt K., (1999), The Molecular and Electronic Structure of Symmetrically and Asymetrically Coordinated, Non-Heme Iron Complexes Containing [FeIII (μN) FeIV] 4 + (S=3/2) and [FeIV (μN) FeIV] 5 + (S=0) Cores, Chemistry - A European Journal, 5(2), 739-810.
- 38. Gütlich P., Hauser A., Spiering H. (1994), Thermal and optical switching of iron (II) complexes, Angewandte Chemie International Edition in English, 33(20), 2024-2054.
- 39. van Koningsbruggen P.J., Maeda Y., Oshio H. (2004), Iron (III) spin crossover compounds, in: Spin crossover in transition metal compounds I, Springer, Berlin-Heidelberg, 259-324.
- 40. Dezsi I., Keszthelyi L., Kulgawczuk D., McInar B., Eissa N.A. (1967), Mössbauer Study of β-and δFeOOH and their Disintegration Products, Physica Status Solidi (b), 22(2), 617-629.
- 41. Gütlich P., Goodwin H.A. (2004), Spin crossover - an overall perspective, in: Spin Crossover in Transition Metal Compounds I, Springer, Berlin-Heidelberg, 1-47.
- 42. Decurtins S., Gütlich P., Köhler C.P., Spiering H., Hauser A., (1984), Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetra-fluroborate spin-crossover system, Chemical Physics Letters, 105(1), 1-4.
- 43. Ksenofontov V., Spiering H., Reiman S., Garcia Y., Gaspar A.B., Moliner N., …, Gütlich P. (2001), Direct monitoring of spin state in dinuclear iron(II) coordination compounds, Chemical Physical Letters, 348(5-6), 381-386.
- 44. Ruben M., Breuning E., Lehn J.M., Ksenofontov V., Renz F., Gütlich P., Vaughan G.B. (2003), Supramolecular spintronic devices: spin transitions and magnetostructural correlations in [Fe4IIL4] 8 + [2x2] grid type complexes, chemistry - A European Journal, 9(18), 4422-4429.
- 45. Breuning E., Ruben M., Lehn J.M., Renz F., Garcia Y., Ksenofontov V., …, Rissanen K. (2000), Spin Crossover in a Supramolecular Fe(4)(II), Angewandte Chemie International Edition in English, 39(14), 2504-2507.
- 46. Galyametdinov Y., Ksenofontov V., Prosvirin A., Ovchinnikov I., Ivanova G., Gütlich P., Haase W. (2001), First example of coexistence of thermal spin transition and liquid crystal properties, Angewandte Chemie International Edition in English, 40(22), 4269-4271.
- 47. Kopcewicz M. (1989), Radio Frequency Field-Induced Effects in Ferromagnetic Materials, in: Mössbauer Spectroscopy Applied to Inorganic Chemistry, Springer, Boston MA, 243-287.
- 48. Idczak K., Idczak R., Konieczny R. (2016), An investigation of the corrosion of polycrystalline iron by XPS, TMS and CEMS, Physica B: Condensed Matter, 491, 37-45.
- 49. Zuckermann J.J. (1971), Applications of 119Sn Mössbauer Spectroscopy to the Study of Organotin Compounds, in: Advamces in Organometallic Chemistry, Vol. 9, Academic Press, 21-134.
- 50. Cashion J.D., Prowse D.B., Vas A. (1973), Mössbauer effect study of gadolinium compounds using 155Gd, Journal of Physics C Solid State Physics, 6(16), 2611.
- 51. Klingelhöfer G. (1999), The miniaturized spectrometer MIMOS II, in: Mössbauer spectroscopy in materials science, Springer, Dordrecht, 413-426.
- 52. Maliszewski A., Gałązka-Fridman J., Szlachta K., Urbański M. (2011), The Catalogue of Martian Mössbauer Spectra, Acta Physica Polonica A, 119(1), 10-11.
- 53. Klingelhoefer G., Morris R.V., De Souza P.A., Rodionov D., Schröder C. (2007), Two earth years of Mössbauer studies of the surface of Mars with MIMOS II., in: NASSAU 2006, Springer, Berlin-Heidelberg, 169-177.
- 54. Klingelhoefer G., DeGrave E., Morris R.V., van Alboom A., De Resende V.G., De Souza P.A., Yen A. (2005), Mössbauer spectroscopy on Mars: goethite in the Columbia Hills at Gusev crater, Hyperfine Interactions, 166(1-4), 549-554.
- 55. Gałązka-Friedman J. (1988), The investigation of the surface of terrestrial planets, Postępy Astronomii (Kraków), 36, 233-243.
- 56. Knudsen J.M., Mørup S., Gałązka-Fridman J. (1990), Mössbauer spectroscopy and the iron on Mars, Hyperfine Interaction, 57(1-4), 2231-2235.
- 57. Gałązka-Friedman J., Kotlicki A., Ślawska-Waniewska A., Witek A. (2013), w: Szego K. (red.), The environmental model of Mars: Proceedings of the 2nd COSPAR Colloquium held in Sopron, Hungary, 22-26 January 1990 (Vol. 2), Elsevier.
- 58. Klingelhoefer G., Bernhardt B., Foh J., Bonnes U., Rodionov D., De Souza P.A., Kankeleit E. (2003), The miniaturized Mössbauer spectrometer MIMOS II for extraterrestrial and outdoor terrestrial applications: A status report, in: Mössbauer Spectroscopy, Springer Dordrecht, 371-379.
- 59. Schroder C., Klingelhöfer G., Morris R.V., Rodionov D.S., Fleischer I., Blumers M., (2008), Extreterrestrial Mössbauer spectroscopy: more than 3 years of Mars exploration and developments for future missions, Hyperfine Interactions, 182(1-3), 149-156.
- 60. Klingelhöfer G. (2005), Mössbauer in situ studies of the surface of Mars, in: HFI/NQI 2004 Springer, Berlin-Heidelberg, 117-124.
- 61. Wojnarowska A., Gałązka-Fridman J., Bakun-Czubarow N. (2008), Weathering of Martian and Earth surface studies by Mössbauer spectroscopy, Hyperfine Interactions, 186(1-3), 173-180.
- 62. Bolewski A., Żabiński W.(red.) (1979), Metody badań minerałów i skał. Praca zbiorowa. Wydawnictwa Geologiczne.
- 63. Artymowicz P. (1995), Astrofizyka układów planetarnych, Wydawnictwo Naukowe PWN.
- 64. Li Y.H. (2000), A compedium of geochemistry: from solar nebula to the human brain, Princeton University Press.
- 65. Manecki A. (1975), Meteoryty, pyły kosmiczne i skały księżycowe, Państwowe Wydawnictwo Naukowe.
- 66. McSween H.Y. (1996), Od gwiezdnego pyłu do planet: geologiczna podróż przez Układ Słoneczny, Prószyński i S-ka.
- 67. Manecki A. (1972). Studium mineralogiczno-petrograficzne meteorytu Pułtusk, Prace Mineralogiczne PAN, 27, 53-65.
- 68. Ryka W., Maliszewska A. (1991), Słownik petrograficzny, Wydawnictwa Geologiczne, Warszawa.
- 69. Brearley A.J., Jones R.H. (1998), Chondritic meteorites, in: Planetary Materials (red. Papike J.J.), Washington DC, 3-398.
- 70. Mason B. (1963), Olivine composition in chondrites, Geochimica et Cosmochimica Acta, 27(10), 1011-1023.
- 71. Manson B. (1968), Pyroxenes in meteorities, Lithos, 1(1), 1-11.
- 72. Froese E. (2003), Points defects in pyrrhotite, Canadian Mineralogist, 41, 1061-1067.
- 73. Koto K., Kitamura M. (1981), The superstructure of intermediate pyrrhotite. II. One-dimensional aout-of-dtep vector of Fe vacancies in the incommensurate structure with compositional range from Fe9S10 to Fe1 1S12, Acta Crystallographica A, 37, 302-308.
- 74. Dekkers M.J. (1989), Magnetic properties of natural pyrrhotite. Part II: High-and-low-temperature behaviour of Jrs an d TRM as function of grain size, Physics of Earth and Planetary Interviews, 57, 266-283.
- 75. Lauretta D.S., Kremser D.T., Fegley Jr B. (1996), The rate of iron sulphide in the solar nebula, Icarus, 122, 288-315.
- 76. Bruni L. (1970), Jeszcze o chondrycie węglistym Allende, Urania, 10, 287-289.
- 77. Kruse O. (1990), Mössbauer and X-ray study of the effects of vacancy concentration in synthetic hexagonal pyrrhotites, American Mineralogist, 75(7-8), 755-763.
- 78. Przylibski T.A. 2016, Chondryt Sołtmany, Acta Societatis Metheoriticae Polonorum, 7, 93-122.
- 79. Lagarec K. Rancourt D.G. 1998, Recoil: Mössbauer spectral analysis software for Windows, version 1.0., Ottawa, Canada, Department of Physics, University of Ottawa.
- 80. Elewa N.N., Cadogan J.M. 2017, An 57Fe Mössbauer study of the ordinary chondrite meteorite Lynch 001, Hyperfine Interactions, 283(1), 1-7.
- 81. Loayza M.L.C., Cabrejos J.A.B. (2001), Characterization of the Carancas-Puno meteorite by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Mössbauer spectroscopy, Hyperfine Interactions, 203(1-3), 17-23.
- 82. Munayco P., Munayco J., Varela M.E., Scorzelli R.B. (2013), The new Peruvian meteorite Carancas: Mössbauer spectroscopy and X-ray diffraction studies, Earth Moon and Planets, 110(1-2), 1-9.
- 83. Abdu Y.A., Ericsson T., Annersten H., Dubrovinskaia N.A., Dubrovinskaia L.S., Gismelseed A.M. (2002), Mössbauer studies on the metallic phases of Al Kidirate and New Haifa meteorites, in: Hyperfine Interactions (C), Spronger, Dordrecht, 375-278.
- 84. Wojnarowska A., Dziel T., Gałązka-Friedman J. (2008), New mineralogical phases identified by Mössbauer measurements in Morasko meteorite, Hyperfine Interactions, 186(1-3), 167-171.
- 85. Gałązka-Fridman J., Szlachta K., Woźniak M. (2014), Mössbauer studies of Soltmany and Shisr 176 meteorites - comparison with other ordinary chondrites. Hyperfine Interactions, 226(1-3), 593-600.
- 86. Karwowski Ł. (2012), Sołtamany meteorite, Meteorites, 2.
- 87. Wlotzka F. (1993), A weathering scale for the ordinary chondrities, Meteoritics, 28.
- 88. Berry F.J., Bland P.A., Oates G., Pililinger C.T. (1994), Iron-57 Mössbauer spectroscopic studies of the weathering of L-chondrite meteorites, Hyperfine Interactions, 91(1), 577-581.
- 89. Verma H.C., Bijlani N., Tripathi A., Tripathi R.P. (2008), A Mössbauer spectroscopic study of simulated weathering of Didwana ordinary chondrites, in: ICAME 2007, Springer, Berlin-Heidelberg, 1023-1027.
- 90. Herr W., Skerra B. (1969), Mössbauer spectroscopy applied to the classification of stone meteorites, in: Meteorite research, Springer, Dordrecht, 106-122.
- 91. Bland P.A., Sexton A.S., Jull A.T., Bevan A.W.R., Berry F. J., Thornley D.M., Pillinger C.T. (1998), Climate and rock weathering: A study of terrestrial age dated ordinary chondritic meteorites from hot desert regions, Geochimica et Cosmochimica Acta, 62(18), 3169-3184.
- 92. Paliwal B.S., Tripathi R.P., Verma H.C., Sharma S.K. (2000), Classification of the Didwana-Rajod meteorite: A Mössbauer spectroscopic study, Meteoritics Planetary Science, 35(3), 639-642.
- 93. Verma H.C., Rawat A., Paliwal B.S., Tripathi R.P. (2002), Mössbauer spectroscopic studies of an oxidized ordinary chrondrite fallen at Itawa-Bhopji, India, Hyperfine Interactions, 141(3-4), 643-652.
- 94. Verma H.C., Jee K., Tripathi R.P. (2003), Systematics of Mössbauer absorption areas in ordinary chondrites and applications to a newly fallen meteorite in Jodhpur, India, Meteoritics Planetary Science, 38(6), 963-967.
- 95. Oshtrakh M.I. Petrova E.V., Grokhovsky V.I., Semionkin V.A. (2008), A study of ordinary chondrites by Mössbauer spectroscopy with high velocity resolution, Meteoritics & Palnetary Science, 43(5), 941-958.
- 96. Maksimova A.A., Ostrakh M.I., Chukin A.V., Felner I., Yakovlev G.A., Semionkin V.A. (2018), Characterization of Northwest Africa 6286 and 7857 ordinary chondrites using X-ray diffraction, magnetization measurements and Mössbauer spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 192, 275-284.
- 97. Szlachta K., Gałązka-Friedman J., Woźniak M. (2014), Porównawcze badania mössbauerowskie meteorytów: Sołtmany (L6), Chelyabinsk (LL5) i Grzempy (H5), Acta Societatis Metheoriticae Polonorum, 5, 115-120.
- 98. Gałązka-Friedman J., Szlachta K., Woźniak M. (2014), Mössbauer studies of Soltmany and Shisr 176 meteorites - comparison with other oridinary chondrites. Hyperfine Interactions, 226(1-3), 593-600.
- 99. Lipka J., Sitek J., Dekan J., Degmová J., Porubčan V. (2013), Mössbauer study of Slovak meteorites, Hyperfine Interactions, 218(1-3), 107-111.
- 100. Ortalli I., Pedrazzi G. (1990), Study of the Torino meteorite, Hyperfine Interactions, 57(1), 2275-2278.
- 101. Zhang Y., Stevens J.G., Li Y., Li Z. (1994), Mössbauer study of the Jilin and Xinyang meteorites, Hyperfine Interactions, 91(1), 547-550.
- 102. Abdu Y.A., Ericsson T. (1997), Mössbauer spectroscopy, x-ray diffraction, and electron microprobe analysis of the New Haifa meteorite, Meteoritics & Planetary Science, 32(3), 373-375.
- 103. Fisher R.A. (1936), The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7(2), 179-188.
- 104. Mahalanobis P.C. (1936), On the generalized distance in statistics, National Institute of Science of India.
- 105. Keil K., Fredriksson K., (1964), The iron, magnesium, and calcium distribution in coexisting olivines and rhombic pyroxenes of chondrites, Journal of Geophysical Research, 69(16), 3487-3515.
- 106. Simkus D.N., Aponte J.C., Elsila J.E., Parker E.T., Glavin D.P., Dworkin J.P. (2019), Methodologies for Analyzing Soluble Organic Compounds in Extraterrestrial Samples: Amino Acids, Amines, Monocaboxylic Acids, Aldehydes, and Ketones, Life, 9(2), 47.
- 107. Krzanowski W. (2000), Principles of multivariate analysis, vol. 23, OUP Oxford.
- 108. Morris R.V., Klingelhöfer G., Korotev R.L., Shelfer T.D. (1998), Mössbauer mineralogy on the Moon: The lunar regolith, Hyperfine interactions, 117(104), 405-432.
- 109. Bauminger E.R., Barcikowska M., Friedman A., Gałązka-Friedman L., Hechel D., Nowik I. (1994), Does iron play a role in Parkinson’s disease?, Hyperfine Interactions, 91(1), 853-857.
- 110. Dubiel S.M., Zablotna-Rypien B.M., Mackey J.B., Williams J.M., (1999), Magnetic properties of human liver and brain ferritin, European Biophysics Journal, 28(3), 263-267.
- 111. Gerlach M., Trautwein A.X., Zecca L., Youdim M.B.H., Riederer P. (1995), Mössbauer spectroscopic studies of purified human neuromelanin isolated from the substantia nigra, Journal of Neurochemistry, 65(2), 923-926.
- 112. Kopystyńska A., Gronkowski J. (2001), Fizyczne metody badań w biologii, medycynie i ochronie środowiska, Potępy Fizyki, 52, 209-212.
- 113. Lang G. (1968), Neighbor nucleus effect in a Mössbauer spectrum, Physics Letters A, 26(6), 223-224.
- 114. Lang G. (1970), Mössbauer spectroscopy of haem proteins, Quarterly Reviews of Biophysics, 3(1), 1-60.
- 115. Winterhalter K.H., Di Iorio E.E., Beetlestone J.G., Kushimo J.B., Uebelhack H., Eicheb H., Mayer A., (1972), The electronic structure of the haem iron in haemoglobin Zurich β63his→arg, Journal of Molecular Biology, 70(3), 665-674.
- 116. Gonser U., Maeda Y., Trautwein A., Parak F., Formanek H. (1974), Sing and orientation determination of the principal axis of the electric field gradient in Fe57 enriched deoxygenated myoglobin single crystals, Zeitschrift für Naturforschung B, 29(3-4), 241-244.
- 117. Rao K.K., Smith R.V., Cammack R., Evans M.C., Hall D.O., (1972), Spectroscopic characterization of ferredoxin from the blue-green alga Microcystis flos-aquae, Biochemical Journal, 129(5), 1159.
- 118. Bell S.H., Weir M.P., Dickson D.P., Gibson J.F., Sharp G.A., Peters T.J., (1984), Mössbauer spectroscopic studies of human haemosiderin and ferritin, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 787(3), 227-236.
- 119. Evans E.H., Dickson D.P., Johson C.E., Rush J.D., Evans M.C., (1981), Mössbauer spectroscopic studies of the nature of centre X of photosystem I reaction centers from the cyanobacterium Chlorogloea fritschii, European Journal of Biochemistry, 118(1), 81-84.
- 120. Johson C.E. (1971), Mössbauer spectroscopy and biophysics, Physics Today, 24, 35.
- 121. Frankel R.B., Bazyliński D.A. (1994), Magnetotaxis and magnetic particles in bacteria, Hyperfine Interactions, 90(1), 135-142.
- 122. Jacobs A., Peters S.W., Bauminger E.R., Eikelboom J., Ofer S., Rachmilewitz E.A. (1981), Ferritin concentration in normal and abnormal erythrocytes measured by immunoradiometric assay with antibodies to heart and spleen ferritin and Mössbauer spectroscopy, British Journal of Haematology, 49(2), 201-207.
- 123. Johnstone B.M., Boyle A.J.F., (1967), Basilar membrane vibration examined with the Mössbauer technique, Science, 158(3799), 389-390.
- 124. Robles L., Rhode W.S., Geisler C.D., (1976), Transient response of the basilar membrane measured in squirrel monkeys using the Mössbauer effect, The Journal of the Acoustical Society of America, 59(4), 926-939.
- 125. Parak F., Frolov E.N., Mössbauer R.L., Goldanskii V. I., (1981), Dynamics of metmyoglobin crystals investigated by nuclear gamma resonance absorption. Journal of Molecular Biology, 145(4), 825-833.
- 126. Cohen S.G., Bauminger E.R., Nowik I., Ofer S., Yariv J., (1981), Dynamics of the iron-containing core in crystals of the iron-storage protein, ferritin, through Mössbauer spectroscopy, Physical Review Letters, 46(18), 1244.
- 127. Keller H., Debrunner PG., (1980), Evidence for conformational and diffusional mean square displacements in frozen aqueous solution of oxymyoglobin, Physical Review Letters, 45(1), 68.
- 128. Nowik I., Cohen S.G., Bauminger E.R., Ofer S. (1983), Mössbauer absorption in overdamped harmonically bound particles in Brownian motion, Physical Review Letters, 50(19), 1528.
- 129. Jellinger K.A., (1999), The role of iron neurodegeneration, Drugs Aging, 14(2), 115-140.
- 130. Elbaz A., Moisan F. (2008), Update in the epidemiology of Parkinson’s disease, Current Opinion in Neurology, 21(4), 454-460.
- 131. Youdim M.B.H., Ben-Shachar D., Riederer P. (1989), Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanon induced neurodegeneration?, Acta Neurologica Scandinavica, 80, 47-54.
- 132. Dexter D.T., Sian J., Rose S., Hindmarsh J.S., Mann V.M., Cooper J.M., Wells F.R., Daniel S.E., Lees A.J., Schapira A.H.V., Jenner P., Marsden C.D., (1994), Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Annals of Neurology, 35, 28-44.
- 133. Wypijewska A., Gałązka-Friedman J., Bauminger E.R., Wszolek Z.K., Schweitzer K.J., Dickson D.W., …, Friedman A. (2010), Iron and reactive oxygen species activity in parkinsonian substantia nigra, Parkinsonism & Related Disorders, 16(5), 329-333.
- 134. Gałązka-Friedman J. (2014), Żelazo w neurodegeneracji, Kosmos, 63(3), 325-330.
- 135. Gałązka-Friedman J., Bauminger E.R., Koziorowski D., Friedman A. (2004), Mössbauer spectroscopy and ELISA studies reveal differences between Parkinson’s disease and control substantia nigra, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1688(2), 130-136.
- 136. Koziorowski D., Friedman A., Gałązka-Friedman J. (2003), Ferritin in parkinsonian and control brains, Journal of Neurochemistry, 85, 29-29.
- 137. Gałązka-Friedman J., Bauminger E.R., Szlachta K., Friedman A. (2012), The role of iron in neurodegeneration - Mössbauer spectroscopy, electron microscopy, enzyme-linked immunosorbent assay and neuroimaging studies, Journal of Physics: Condensed Matter, 24(24), 244106.
- 138. Fahn S., Cohen G. (1992), The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it, Annals of Neurology, 32(6), 804-812.
- 139. Gałązka-Friedman J., Friedman A., Bauminger E.R. (2009), Iron in the brain, in: ISIAME 2008 Springer, Berlin-Heidelberg, 31-37.
- 140. Friedman A., Gałązka-Friedman J. (2012), The history of the research of iron in parkinsonian substantia nigra, Journal of Neural Transmission, 119(12), 1507-1510.
- 141. Dexter D.T., Carayon A., Javoy-Agid F., Agid Y., Wells F.R., Daniel S.E., Marsden C.D. (1991), Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia, Brain, 114(4), 1953-1975.
- 142. Gałązka-Friedman J., Bauminger E., Szlachta K., Schweitzer K., Wszołek Z., Dickson D., Friedman A. (2009), Mössbauer studies of pathological tissues affected by PSP disease, Acta Physica Polonica A, 2(115), 545-547.
- 143. Bauminger E.R., Harrison P.M., Hechel D., Nowik I., Treffry A. (1991), Mössbauer spectroscopic investigation of structure-function relations in ferritins, Biochimica Et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1118(1), 48-58.
- 144. Schenck J.F. (2003), Magnetic resonance imaging of brain, Journal of the Neurological Science, 207(1), 99-102.
- 145. Haacke E.M., Cheng N.Y., House M.J., Liu Q., Neelavalli J., Ogg R.J., Obenaus A. (2005), Imaging iron stores in the brain using magnetic resonance imaging, Magnetic Resonance Imaging, 23(1), 1-25.
- 146. Brooks R.A., Vymazal J., Goldfarb R.B., Bulte J.W., Aisen P. (1998), Relaxometry and magnetometry of ferritin, Magnetic Resonance in Medicine, 40(2), 227-235.
- 147. Deoni S.C. (2010), Quantitative relaxometry of the brain, Topics in Magnetic Resonance Imaging: TMRI, 21(2), 101.
- 148. Litvan I., Bhatia K.P., Burn D.J., Goetz C.G., Lang A.E., McKeith I., Wenning G.K. (2003), Movement Disorders Society Scientific Issues Committee report: SIC Task Force appraisal of clinical diagnostic criteria for parkinsonian disorders, Movement Disorders: Official Journal of the Movement Disorder Society, 18(5), 467-486.
- 149. Langkammer C., Krebs N., Goessler W., Scheurer E., Ebner F., Yen K., Ropele S. (2010), Quantitative MR imaging of brain iron: a postmortem validation study, Radiology, 257(2), 455-462,
- 150. Gałązka-Friedman J., Bauminger E.R., Koziorowski D., Friedman A. (2004), Mössbauer spectroscopy and ELISA studies reveal differences between Parkinson’s disease and control substantia nigra, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1688(2), 130-136.
- 151. Zecca L., Gallorini M., Schünemann V., Trautwein A.X., Gerlach M., Riederer P., …, Tampellini D. (2001), Iron, neiromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes, Journal of Neurochemistry, 76(6), 1766-1776.
- 152. Praca inżynierska: P. Kazulo, Meta-analiza koncentracji żelaza w strukturach mózgu pacjentów zmarłych w przebiegu chorób neurodegeneracyjnych, Politechnika Warszawska, Wydział Fizyki, Warszawa 2019, promotor: P. Duda.
- 153. Cadogan J.M., Rebbouh L., Mills J.V.J., Bland P.A. (2013), An 57Fe Mössbauer study of three Australian L5 ordinary-chondrite meteorites: dating Kinclaven-001, Hyperfine Interactions, 222(32), 91-98.
- 154. Ok H.N., Baek K.S., Kim C.S. (1982), Mössbauer study of Cr x Fe 1 - x S, Physical Review B, 26(9), 5223.
- 155. Baek K.S., Park Y.S., Ok H.N. (1984), Effects of vanadium impurities on the crystallographic and spin-rotation transitions of iron sulfide, Physical Review B, 30(1), 404.
- 156. Lang B., Kowalski M. (1971), On the possible number of mass fragments from Pultusk meteorite shower: 1868, Mateoritics, 6.
- 157. Szurgot M. (2015), Mean Atomic Weight of Pultusk Meteorite and H Chondrites, in: 78th Annual Meeting of the Meteoritical Society, vol. 1856, 5013.
- 158. Wilkison S.L., Robinson M.S. (2000), Bulk density of ordinary chondrite meteorites and implications for asteroidal internal structure, Meteoritics & Planetary Science, 35(6), 1203-1213.
- 159. Schmitz B., Tassinari M., Peucker-Ehrenbrink B. (2001), A rain of ordinary chondritic meteorites in the early Ordovician, Earth and Planetary Science Letters, 194(1-2), 1-15.
- 160. Wylie C.C. (1940), The orbit of the Pultusk meteor, Popular Astronomy, 48, 306.
- 161. Paneth F.A. (1937), Meteorites: the Number of Pultusk Stone, and the Spelling of “Widmanstätten Figures”, Nature, 140(3542), 504.
- 162. Scorzelli R.B. (1997), A study of phase stability in invar Fe-Ni alloys obtained by non-conventional methods, Hyperfine Interactions, 110(1-2), 143-150.
- 163. Norton O.R. (2002), The Cambridge encyclopedia of meteorites, 374.
- 164. Buhl S., Toueirjenne C., Hofmann B., Laubenstein M., Wimmer K. (2014), the meteorite fall near Boumdeid, Mauritania, from September 14, 2011, Meteorites, 3.
- 165. Zolensky M.E., Bodnar R.J., Rubin A.E. (1999), Asteroidal water within fluid-inclusion-bearing halite in ordinary chondrites, Meteoritics and Planetary supplement, 34, A124.
- 166. Praca doktorska: D. Koziorowski, Rola ferrytyny w patogenezie choroby Parkinsona, I Wydział Lekarski, Katedra I Klinika Neurologii Akademii Medycznej w Warszawie, Warszawa 2005, promotor: A. Friedman.
- 167. Anderson G.J., Frazer D.M. (2017), Current understanding of iron homeostasis, The American Journal of Clinical Nutrition, 106(suppl. 6), 1559S-1566S.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fefdd53f-aa06-4062-8205-72e6d1fe6352