PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Graphene as the Disperse Phase in the Polyamide Matrix

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of investigations into the development of a new composite material with polyamide matrix and multilayer graphene as the disperse phase. Consolidation of the new material was preceded by the selection of appropriate parameters of the proces of preparation of powders (elements of composite material). Mechanical and structural properties of the new composite in form of PA-G strips were assessed at the microstructural level using nanoindentation test, optical techniques (3D microscope), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results of the tests showed that adopted technologies of production allow to obtain material with improved mechanical properties and homogeneous deployment of strengthening phase in the soft polyamide matrix. These features allow to apply new material in special constructions, especially in regard to load-bearing elements of small arms, butt and additional equipment.
Rocznik
Strony
89--100
Opis fizyczny
Bibliogr. 16 poz., il., tab., wykr.
Twórcy
autor
  • Warsaw University of Technology, Institute of Precision Mechanics
autor
  • Warsaw University of Technology, Department of Construction Engineering and Biomedical Engineering
autor
  • Warsaw University of Technology, Institute of Precision Mechanics
autor
  • Warsaw University of Technology, Institute of Precision Mechanics
Bibliografia
  • 1. Araby, S., Zaman, I., Meng, Q., Kawashima, N., Michelmore, A., Kuan, H.-C., Majewski, P., Ma, J., and Zhang, L. (2013). Melt compounding with graphene to develop functional, high-performance elastomers. Nanotechnology, 24(16):165601.
  • 2. Bajkowski, M., Kaniewski, J., and Radomski, M. (2015). Dynamika układu mechanicznego: strzelec: amortyzator odrzutu: broń palna. Problemy Mechatroniki: uzbrojenie, lotnictwo, inżynieria bezpieczeństwa, 6:41–56.
  • 3. Cheng, Q., Tang, J., Shinya, N., and Qin, L.-C. (2013). Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. Journal of Power Sources, 241:423–428.
  • 4. Fogagnolo, J., Velasco, F., Robert, M., and Torralba, J. (2003). Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders. Materials Science and Engineering: A, 342(1):131–143.
  • 5. Gonçalves, G., Marques, P. A., Barros-Timmons, A., Bdkin, I., Singh, M. K., Emami, N., and Grácio, J. (2010). Graphene oxide modified with PMMA via ATRP as a reinforcement filler. Journal of Materials Chemistry, 20(44):9927–9934.
  • 6. Hekner, B., Myalski, J., Valle, N., and Botor-Probierz, A. (2014). Influence of carbon nanotubes and carbon particles on tribological properties in aluminium based composites. Composites Theory and Practice, 14(1):43–49.
  • 7. ISO, P. (2005). 14577-1: Metafile – instrumentalna próba wciskania wgłębnika do określania twardości i innych własności materiałów – część 1: Metoda badania. PKN, Warszawa.
  • 8. Kelar, K. (2006). Modyfikowany fulerenami poliamid 6 wytwarzany metodą anionowej polimeryzacji e-kaprolaktamu. Polimery, 51(6):415–424.
  • 9. Kim, J., Park, S.-J., and Kim, S. (2013). Capacitance behaviors of polyaniline/graphene nanosheet composites prepared by aniline chemical polymerization. Carbon Letters, 14(1):51–54.
  • 10. Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., and Lee, J. H. (2010). Recent advances in graphene based polymer composites. Progress in Polymer Science, 35(11):1350–1375.
  • 11. Makuch, A., Trzaska, M., Skalski, K., and Bajkowski, M. (2015). PA-G composite powder for innovative additive techniques. Composites Theory and Practice, 15(3):152–157.
  • 12. Oliver, W. C. and Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 19(01):3–20.
  • 13. Schuh, C. A. (2006). Nanoindentation studies of materials. Materials Today, 9(5):32–40.
  • 14. Sneddon, I. N. (1965). The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 3(1):47–57.
  • 15. Yan, W., Pun, C. L., and Simon, G. P. (2012). Conditions of applying Oliver–Pharr method to the nanoindentation of particles in composites. Composites Science and Technology, 72(10):1147–1152.
  • 16. Zhu, J., Chen, M., Qu, H., Zhang, X., Wei, H., Luo, Z., Colorado, H. A., Wei, S., and Guo, Z. (2012). Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage. Polymer, 53(25):5953–5964.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fefabaaf-451a-42e2-b2ac-e30096ddba87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.