PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bending resistance of metal-concrete composite beams in a natural fire

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nośność na zginanie belek zespolonych metalowo-betonowych w pożarze naturalnym
Języki publikacji
EN
Abstrakty
EN
In this paper, the bending resistance of three metal-concrete composite beams was compared in real car fires in an open car park. Steel and concrete composite beams are often used for the construction of ceilings in multi-storey car parks. The authors made an attempt to evaluate how the replacement of a non-alloy steel girder with a stainless steel or aluminium alloy girder affects the bending resistance of a composite beam under fire conditions. The analysed beams were not fire-protected. They consisted of a concrete slab and a girder made of: non-alloy (carbon) S235J2 (1.0117) steel, X6CrNiMoTi17-12-2 (1.4571) stainless steel, and AW-6061 T6 (EN AW-Al Mg1SiCu) aluminium alloy.
PL
W artykule porównano nośności na zginanie trzech wybranych belek zespolonych metalowo-betonowych w warunkach pożaru samochodów w otwartym garażu. Autorzy próbują ocenić jaki wpływ na nośność zginanej belki zespolonej ma zamiany dźwigara ze stali niestopowej na dźwigar ze stali nierdzewnej lub stopu aluminium. Przeanalizowano niezabezpieczone przed ogniem belki zespolone złożone z betonowej płyty oraz dźwigarów wykonanych z: stali konstrukcyjnej niestopowej S235J2 (1.0117), stali nierdzewnej X6CrNiMoTi17-12-2 (1.4571) lub stopu aluminium AW-6061 T6(EN AW-Al Mg1SiCu).
Rocznik
Strony
149--162
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Faculty of Civil and Environmental Engineering, Poznań, Poland
autor
  • Poznan University of Technology, Faculty of Civil and Environmental Engineering, Poznań, Poland
Bibliografia
  • 1. Biegus A., Lorenc W.: Development of shear connections in steel-concrete composite structures, Civil And Environmental Engineering Reports, 15, 4 (2014) 23-32.
  • 2. Polus Ł., Szumigała M.: Tests of shear connectors used in aluminium concrete composite structures, in: Recent Progress in Steel and Composite Structures, edit. M. Giżejowski, A. Kozłowski, J. Marcinowski, J. Ziółko, Boca Raton, CRC Press-Taylor & Francis Group 2016, 133-136.
  • 3. Kozioł P.: Modern design of steel-concrete composite structures, Zeszyty Naukowe Politechniki Częstochowskiej, Budownictwo, 21 (2015) 118-127.
  • 4. Polus Ł., Chybiński M., Szumigała M.: Nośność na zginanie belek zespolonych metalowo-betonowych w warunkach pożaru standardowego, Przegląd Budowlany, 7-8 (2018) 128-132 [in Polish].
  • 5. Szumigała M., Polus Ł.: Applications of aluminium and concrete composite structures, Procedia Engineering, 108 (2015) 544-549.
  • 6. Szumigała M., Polus Ł.: An numerical simulation of an aluminium-concrete beam, Procedia Engineering, 172 (2017) 1086-1092.
  • 7. Lam D., Gardner L.: Structural design of stainless steel concrete filled columns, Journal of Constructional Steel Research, 64 (2008) 1275-1282.
  • 8. Gardner L., Insausti A., Ng K. T., Ashraf M.: Elevated temperature material properties of stainless steel alloys, Journal of Constructional Steel Research, 66, 5 (2010) 634-647.
  • 9. Ellobody E.: Composite slim floor stainless steel beam construction exposed to different fires, Engineering Structures, 36 (2012) 1-13.
  • 10. Gardner L., Cruise R. B., Sok C. P., Krishnan K., Ministro dos Santos J.: Life cycle costing of metallic structures, Proceedings of the Institution of Civil Engineers – Engineering Sustainability, 60, 4 (2007) 166-177.
  • 11. Das S. K., Kaufman J. G.: Aluminum alloys for Bridges and bridge decks, in: Aluminum alloys for transportation, packaging, aerospace, and other applications, edit. K. D. Subodh, W. Yin W., The Minerals, Metals and Materials Society 2017, 61-72.
  • 12. Mazzolani F. M.: Structural Applications of Aluminium in Civil Engineering, Structural Engineering International, 16, 4 (2006) 280-285.
  • 13. Kossakowski P., Wciślik W., Bakalarz M.: Selected aspects of application of aluminium alloys in building structures, Structure and Environment, 9, 4 (2017) 256-263.
  • 14. Dokšanović T., Džeba I., Markulak D.: Applicacations of aluminium alloys in civil engineering, Technical Gazette, 24, 5 (2017) 1609-1618.
  • 15. Kossakowski P.: Aluminium alloys as structural material in bridges, Zeszyty Naukowe Politechniki Częstochowskiej, Budownictwo, 22 (2016) 159-170.
  • 16. Dokšanović T., Džeba I., Markulak D.: Variability of structural aluminium alloys mechanical properties, Structural Safety, 67 (2017) 11-26.
  • 17. Moona G., Walia R. S., Rastogi V., Sharma R.: Aluminium metal matrix composites: A retrospective investigation, Indian Journal of Pure & Applied Physics, 56 (2018) 164-175.
  • 18. Chen Y., Ran F., Xu J.: Flexural behaviour of CFRP strengthened concretefilled aluminium alloy CHS tubes, Construction and Building Materials, 142 (2017) 295-319.
  • 19. Szumigała M., Chybiński M., Polus Ł.: Preliminary analysis of the aluminium-timber composite beams, Civil and Environmental Engineering Reports, 27, 4 (2017) 131-141.
  • 20. Siwowski T.: Aluminium Bridges – Past, Present and Future, Structural Engineering International, 16, 4 (2006) 286-293.
  • 21. Tindal P.: Aluminium in bridges, in: ICE Manual of Bridge Engineering, edit. G. Parke, N. Hewson, Institution of Civil Engineers 2008, 345-355.
  • 22. Faggiano B., De Matteis G., Landolfo R., Mazzolani F. M.: Behaviour of aluminium alloy structures under fire, Journal of Civil Engineering and Management, 10, 3 (2004) 183-190.
  • 23. Marcinowski J.: Stresses in a layered, composite structure fabricated from materials of different thermal expansions, Materiały Budowlane, 4 (2018) 107-109.
  • 24. EN 1991-1-2 Eurocode 1: Actions on structures - Part 1-2: General actions – Actions on structures exposed to fire.
  • 25. Szumigała M., Polus Ł.: A comparison of the rise of the temperature of annprotected steel column subjected to the standard fire curve ISO 834 and to a natural fire model in the office, Engineering Transactions, 63, 2 (2015) 157-170.
  • 26. Szymkuć W., Glema A., Malendowski M.: Fire performance of composite concrete filled tubular columns exposed to localized fire, in: Advances in Mechanics: Theoretical, Computational and Interdisciplinary, Proceedings of the 3rd Polish Congress of Mechanics (PCM) and 21st International Conference of Computer Methods in Mechanics (CMM), edit. M. Kleiber et al. [Eds.], CRC Press 2016, 573-576.
  • 27. Malendowski M., Glema A.: Development and Implementation of Coupling Method for CFD-FEM Analyses of Steel Structures in Natural Fire, Procedia Engineering, 172 (2017) 692-700.
  • 28. Szymkuć W., Glema A., Malendowski M., Mielcarek A., Smardz P., Poteralski A.: Numerical investigation of fire and post-fire performance of CFT columns in an open car park fire, in: SiF 2018 – The 10th International Conference on Structures in Fire, FireSert, Ulster University in Belfast, June 6-8, 2018.
  • 29. Zhao B., Kruppa J.: Structural behavior of an open car park under real fire scenarios, Fire and materials, 28 (2004) 269-280.
  • 30. European Commission, Development of design rules for steel structures subjected to natural fires in closed car parks (1999).
  • 31. ArcelorMittal, Building Research Institute (ITB), Poznan University of Technology: Open Steel Car Parks Design for the Polish Market, 2011.
  • 32. Márton T., Dederichs A., Giuliani L.: Modelling of fire in an open car park, in: Proceedings of the International Conference in Dubrovnik, 15-16 October 2015 in edition of Applications of Structural Fire Engineering, edit. F. Wald et al., Czech Technical University in Prauge, DOI: https://doi.org/10.14311/asfe.2015.060, 2017.
  • 33. EN 1994-1-2 Eurocode 4: Design of composite steel and concrete structures - Part 1-2: General rules – Structural fire design.
  • 34. Kruppa J., Zhao B.: Fire resistance of composite beams to Eurocode 4 Part 1.2, Journal of Constructional Steel Research, 33 (1995) 51-69.
  • 35. Baj A., Łapko A.: Evaluation of structural capacity under fire conditions of steel-concrete composite members according to PN-EN 1994-1-2:2008, Budownictwo i Inżynieria Środowiska, 2 (2011) 115-121 [in Polish].
  • 36. Huang Z., Burgess I. W., Plank R. J.: The influence of shear connectors on the behaviour of composite steel-framed buildings in fire, Journal of Constructional Steel Research, 51 (1999) 219-237.
  • 37. Franssen J. M., Real P. V.: Fire design of steel structures, Eurocode 1: Actions on structures, Part 1-2: Actions on structures exposed to fire, Eurocode 3: Design of steel structures, Part 1-2: Structural fire design, ECCS 2010.
  • 38. EN 1993-1-2 Eurocode 3: Design of steel structures - Part 1-2: General rules – Structural fire design.
  • 39. EN 1999-1-2 Eurocode 9: Design of aluminium structures - Part 1-2: General rules – Structural fire design.
  • 40. Brnic J., Turkalj G., Canadija M., Lanc D.: AISI 316Ti (1.4571) steel Mechanical, creep and fracture properties versus temperature, Journal of Constructional Steel Research, 67 (2011) 1948-1952.
  • 41. EN 10088-1:2014, Stainless steels. List of stainless steels.
  • 42. EN 10025-2:2007, European standard for hot-rolled structural steel. Part 2 - Technical delivery conditions for non-alloy structural steels.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fef9a256-8c6f-492a-80f2-5d7dd2204901
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.