PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ductility and formability of Al-Mn ultrafine-grained plates processed by incremental equal channel angular pressing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article discusses the ductility and formability of ultrafine-grained 3003 aluminum alloy plates processed using incremental equal channel angular pressing. The influence of temperature and strain rate is evaluated by means of tensile tests and cupping tests under various conditions. It is reported that tensile elongation increases two-fold at elevated temperature, without excessive grain growth. With the right selection of processing conditions, the formability of the plate, expressed as cup height deformed in a cupping test, can be enhanced—as much as 62% compared with room temperature when the processing takes place at 150 °C. The improvement in ductility was attributed to a reduced apparent activation volume due to grain refinement, which translated into improved strain rate sensitivity.
Rocznik
Strony
art. no. e169, 2022
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska St. 141, 02-507 Warsaw, Poland
  • Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta St. 85, 02-524 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska St. 141, 02-507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska St. 141, 02-507 Warsaw, Poland
Bibliografia
  • [1] Ovid IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci. 2018;94:462–540.
  • [2] Bruder E. Formability of ultrafine grained metals produced by severe plastic deformation—an overview. Adv Eng Mater. 2019;21:1–18.
  • [3] Zhao BY, Zhu Y, Lavernia EJ. Strategies for improving tensile ductility of bulk nanostructured materials. Adv Eng Mater. 2010;12:769–78. https://doi.org/10.1002/adem.200900335.
  • [4] Wang YM, Ma E. Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater Sci Eng A. 2004;377:46–52. https://doi.org/10.1016/j.msea.2003.10.214.
  • [5] Wang YM, Ma E. Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 2004;52:1699–709.
  • [6] Zhao BY, Liao X, Cheng S, Ma E, Zhu YT. Simultaneously increasing the ductility and strength of nanostructured alloys. Adv Mater. 2006;18:2280–3.
  • [7] Xue P, Xiao BL, Ma ZY. Enhanced strength and ductility of friction stir processed Cu–Al alloys with abundant twin boundaries. Scr Mater. 2013;68:751–4.
  • [8] Zhao YH, Liao XZ, Horita Z, Langdon TG, Zhu YT. Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu–Zn alloys. Mater Sci Eng A. 2008;493:123–9.
  • [9] Y. Il Son, Y.K. Lee, K.-T. Park, C.S. Lee, D.H. Shin, Ultrafine grained ferrite – martensite dual phase steels fabricated via equal channel angular pressing : Microstructure and tensile properties, Acta Mater. 53 (2005) 3125–3134.
  • [10] Zhou YZ, Zhao YH, Bingert JF, Zhu YT, Liao XZ, Valiev RZ, Horita Z. Tougher ultrafine grain Cu via high-angle grain boundaries and low. Appl Phys Lett. 2008;92: 081903.
  • [11] Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556. https://doi.org/10.1016/j.pmatsci.2005.08.003.
  • [12] Figueiredo RB, Sabbaghianrad S, Giwa A, Greer JR, Langdon TG. Evidence for exceptional low temperature ductility in poly-crystalline magnesium processed by severe plastic deformation. Acta Mater. 2017;122:322–31.
  • [13] Zhu YT, Liao X. Retaining ductility: nanostructured metals. Nat Mater. 2004;3:351–2.
  • [14] Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu Y. Producing bulk ultrafine-grained materials by severe plastic deformation. J Miner Met Mater Soc. 2006;58:33–9.
  • [15] Erbel S. Mechanical properties and structure of extremely strain hardened copper. Met Technol. 1979;6:482–6. https://doi.org/10.1179/030716979803276363.
  • [16] Marciniak Z, Kuczyński K. Limit strains in the process of stretch-forming sheet metal. Int J Mech Sci. 1967;9:609–20.
  • [17] Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999;47:579–83.
  • [18] Huang J, Zhu YT, Alexander DJ, Liao X, Lowe TC, Asaro RJ. Development of repetitive corrugation and straightening. Mater Sci Eng A. 2004;371:35–9.
  • [19] Hyuk D, Park J, Kim Y, Park K. Constrained groove pressing and its application to grain refinement of aluminum. Mater Sci Eng A. 2002;328:98–103.
  • [20] Chrominski W, Olejnik L, Rosochowski A, Lewandowska M. Grain refinement in technically pure aluminium plates using incremental ECAP processing. Mater Sci Eng A. 2015;636:172–80.
  • [21] Ciemiorek M, Chrominski W, Olejnik L, Lewandowska M. Evaluation of mechanical properties and anisotropy of ultra-fine grained 1050 aluminum sheets produced by incremental ECAP. Mater Des. 2017;130:392–402.
  • [22] Ciemiorek M, Pawliszak Ł, Chromiński W, Lewandowska M. Enhancing the electrical conductivity of electrolytic tough pitch copper channel angular pressing. Metall Mater Trans A. 2020. https://doi.org/10.1007/s11661-020-05818-w.
  • [23] Rosochowski A, Olejnik L, Rosochowska M. Tailored sheared blanks produced by incremental ECAP. Key Eng Mater. 2015;651–653:651–6.
  • [24] Rosochowski A. Severe plastic deformation technology. Dunbeath: Whittles Publishing; 2017.
  • [25] Olejnik L, Rosochowski A, Richert M. Incremental ECAP of plates. Mater Sci Forum. 2008;584–586:108–13.
  • [26] Rosochowski A, Olejnik L. FEM simulation of incremental shear. AIP Conf Proc. 2007;907:653–9.
  • [27] Ciemiorek M, Lewandowska M, Olejnik L. Microstructure, tensile properties and formability of ultra-fine-grained Al–Mn square plates processed by incremental ECAP. Mater Des. 2020;196:109125.
  • [28] Poole WJ, Embury JD, Lloyd DJ. Work hardening in aluminium alloys. Oxford: Woodhead Publishing Limited; 2011. https://doi.org/10.1533/9780857090256.2.307.
  • [29] Wei Q, Cheng S, Ramesh KT, Ma E. Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater Sci Eng A. 2004;381:71–9.
  • [30] Vinogradov BA. Mechanical properties of ultra-fine-grained metals: new challenges and perspectives. Adv Eng Mater. 2015;17:1710–22.
  • [31] Hart EW. Theory of the tensile test. Acta Metall. 1967;15:315–5532. Tang M, Kubin LP, Canova GR. Dislocation mobility and the mechanical response of b.c.c. single crystals: a mesoscopic approach. Acta Mater. 1998;46:3221–35.
  • [33] Suo T, Chen Y, Li Y, Wang C, Fan X. Strain rate sensitivity and deformation kinetics of ECAPed aluminium over a wide range of strain rates. Mater Sci Eng A. 2013;560:545–51. https://doi.org/10.1016/j.msea.2012.09.100.
  • [34] May J, Hoppel HW, Goken M. Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr Mater. 2005;53:189–94. https:// doi. org/ 10. 1016/j. scrip tamat. 2005.03.043.
  • [35] Renk O, Maier-kiener V, Issa I, Li JH, Kiener D, Pippan R. Anneal hardening and elevated temperature strain rate sensitivity of nanostructured metals: their relation to intergranular dislocation accommodation. Acta Mater. 2019;165:409–19.
  • [36] Moreno-Valle EC, Monclus MA, Molina-Aldareguia JM, Enikeev N, Sabirov I. Biaxial deformation behavior and enhanced formability of ultrafine-grained pure copper. Metall Mater Trans A. 2013;44A:2399–408.
  • [37] Cheng YQ, Chen ZH, Xia WJ. Drawability of AZ31 magnesium alloy sheet produced by equal channel angular rolling at room temperature. Mater Charact. 2007;58:617–22.
  • [38] Ciemiorek M, Bartkowski P, Chromiński W, Olejnik L, Lewandowska M. Forming ability of ultrafine-grained aluminum plates processed by incremental equal channel angular pressing. Adv Eng Mater. 2019;1900473:1–10. https://doi.org/10.1002/adem.201900473.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fef7ff39-570b-45c5-8df7-e1e3b5f59ca0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.