Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a multi-scale mathematical model dedicated to a comprehensive simulation of resistance heating combined with the melting and controlled cooling of steel samples. Experiments in order to verify the formulated numerical model were performed using a Gleeble 3800 thermo-mechanical simulator. The model for the macro scale was based upon the solution of Fourier-Kirchhoff equation as regards predicting the distribution of temperature fields within the volume of the sample. The macro scale solution is complemented by a functional model generating voluminal heat sources, resulting from the electric current flowing through the sample. The model for the micro-scale, concerning the grain growth simulation, is based upon the probabilistic Monte Carlo algorithm, and on the minimization of the system energy. The model takes into account the forming mushy zone, where grains degrade at the melting stage – it is a unique feature of the micro-solution. The solution domains are coupled by the interpolation of node temperatures of the finite element mesh (the macro model) onto the Monte Carlo cells (micro model). The paper is complemented with examples of resistance heating results and macro- and micro-structural tests, along with test computations concerning the estimation of the range of zones with diverse dynamics of grain growth.
Wydawca
Czasopismo
Rocznik
Tom
Strony
401--412
Opis fizyczny
Bibliogr. 21 poz., fot., rys., tab., wzory
Twórcy
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Applied Computer Science and Modelling, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Applied Computer Science and Modelling, Al. Mickiewicza 30, 30-059 Krakow, Poland
- The Jan Kochanowski University, Faculty of Mathematics and Natural Science, 5 Żeromskiego Str., 25-369 Kielce, Poland
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, Al. Mickiewicza 30, 30-059 Krakow, Poland
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Institute for Ferrous Metallurgy, 12-14 K. Miarki Str., 44-100 Gliwice, Poland
Bibliografia
- [1] M. Hojny, Modeling steel deformation in the semi-solid state: Advanced Structured Materials, Springer, Switzerland (2018).
- [2] L. Zhang, H. Shen, Y. Rong, Mat. Sc. and Eng. 466 (1-2), 71-78 (2007).
- [3] A. Kalaki, M. Ketabchi, J. of Mat. Eng. and Tech. 1 (3), 41-45 (2013).
- [4] T. Haga, S. Suzuki, J. Mat. Proc. Tech. 143-144 (1), 895-900 (2003).
- [5] T. Haga, K. Tkahashi, M. Ikawa, J. Mat. Proc. Tech. 153-154 (2), 42-47 (2004).
- [6] S. B. Hassas-Irani, A. Zarei-Hanzaki, B. Bazaz, A. Roostaei, Materials and Design 46, 579-587 (2013).
- [7] Chenyang Zhang, Shengdun Zhao, Guanhai Yan, Yongfei Wang, Journal of Engineering Manufacture 232 (3), 487-498 (2018).
- [8] J. Wang et al., Solid State Phenomena 256, 31-38 (2016).
- [9] C. H. Shashikanth, M. J. Davidson, Materials at High Temperatures 32 (6), 541-550(2015).
- [10] Katti Bharath, Asit Kumar Khanra, M. J. Davidson, Advances in Materials and Metallurgy, 101-114 (2019).
- [11] C. H. Shashikanth, M. J. Davidson, Materials at High Temperatures 31 (3), 274-281 (2014).
- [12] J. C. Álvarez Hostos et al., International Journal of Plasticity 103, 119-142 (2018).
- [13] R. Kopp, J. Choi, D. Neudenberger, J. Mat. Proc. Tech. 135, 317-323 (2003).
- [14] M. Modigell, L. Pape, M. Hufschmidt, Steel Research Int. 75, 506-512 (2004).
- [15] M. Hufschmidt, M. Modigell, J. Petera, Steel Research Int. 75, 513-518 (2004).
- [16] Y. L. Jing, S. Sumio, Y. Jun, J. Mat. Proc. Tech. 161, 396-406 (2005).
- [17] S. D. Jin, O. K. Hwan, Acta Materialia 50, 2259-2268 (2002).
- [18] P. Bereczki et al., Materials Performance and Characterization, ASTM, USA (2015).
- [19] N. Szczygioł, Sol. of Mat. and Al. 30, 221-232(1997).
- [20] R. W. Lewis, P. M. Roberts, App. Sc. Res. 44, 61-92(1987).
- [21] Ł. Madej, Development of the modelling strategy for the strain localization simulation based on the digital material representation, AGH, Cracow (2010).
Uwagi
EN
2. Development of methods for increasing computational efficiency of micro model supported by AGH grant no. 11.11.110.593
PL
3. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fef5a7aa-c557-48e2-ab0c-74f9c2be56a3