PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Concentration optimalization of ethylene glycol in the ground heat exchanger heat pump

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
At present, particular attention is paid to the diversification of heat sources, to the efficient use of energy and to the ecological aspects of the use of primary energies, especially in the EU and within the Slovak republic. A very good way to achieve the use of renewable energy sources. Slovak republic has a real renewable energy potential mainly in biomass, geothermal energy, solar energy and hydroponics of rivers. Every kind of renewable energy has its own specifics. In the Slovak republic water energy and biomass are currently used. In Slovak republic there are suitable conditions for use of geothermal energy due to its suitable placement on breaks in the Carpathian arc. The average geothermal gradient for the SR is 33 K/km, with some locations up to 50 K/km, while the average is 30 K/km in the world. Hydrological research has been focused on prospective geothermal waters with temperatures ranging from 25°C to 150°C with a total usable potential of more than 5 500 MW. The problem of using geothermal water is its potential (water temperature) and mineralization causing the incrustation of pipelines and other system facilities. While geothermal resources with a water temperature above 25°C are closely linked to certain locations, the country's low-potential energy is above average in the whole of Slovak republic. Geothermal heat from the ground is most commonly obtained through horizontal ground/water type heat exchanger (about 40 W/m) or through vertical exchanger embedded in deep boreholes of approximately 100-150 m (40-60 W/m) [4].
Rocznik
Strony
8--12
Opis fizyczny
Bibliogr. 9 poz., rys., wykr.
Twórcy
  • University of Zilina, Slovakia
autor
  • University of Zilina, Slovakia
autor
  • University of Zilina, Slovakia
Bibliografia
  • [1] Baehr H.D., Stephan K.: Heat and mass transfer. Berlin: Springer, 2006, p. 688.
  • [2] Lenhard R., Malcho M.: Numerical simulation device for the transport of geothermal heat with forced circulation of media. Mathematical and Computer Modelling, ISSN 0895-7177, vol. 57, iss. 1-2, (2013), pp. 111-125.
  • [3] Jakubský M., Lenhard R., Jandačka J.: Výstavba zariadenia na simuláciu transportu nízkopotenciálneho geotermálneho tepla v laboratóriu. ALER 2011, Žilina: EDIS Žilina, pp. 88-102.
  • [4] Lenhard R., Jakubský M., Nemec P.: Device for simulation of transfer geothermal heat with forced and without forced circulation of heat carrier. Power control and optimization: proceeding of fourth global conference: Kuching, Malaysia, 2010.
  • [5] Conde M.: Thermophysical Properties of Brines: Models. 2011.
  • [6] Gehlin S.: Thermal Response Test, Method Development and Evaluation. Luleá University of Technology, 2002.
  • [7] Pahud D., Matthey B.: Comparison of the thermal performance of double U-pipe borehole heat exchangers measured in situ: výskumná správa. Switzerland: Energy and Building, 2001.
  • [8] Ryška J.: Vrty do hornonového masivu - zdroj energie pro tepelná čerpadla (III): Zdroje tepla 2006.
  • [9] Srdečný K., Truxa J.: Tepelné čerpadla. Brno 2005.
Uwagi
EN
1. This publication is the result of the project implementation: Device for the use of low-potential geothermal heat without forced circulation of the heat carier in deep boreholes, ITMS 26220220057 supported by the Operational Programme Research and development funded by the ERDF.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fee82fb9-078e-40d4-b1f6-3bad409638a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.