PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Modelling of Detonation Reaction Zone of Nitromethane by EXPLO5 Code and Wood and Kirkwood Theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The detonation reaction zone of nitromethane (NM) has been extensively studied both experimentally and theoretically. The measured particle velocity profile of NM shows the existence of a sharp spike followed by a rapid drop over the first 5-10 ns (fast reaction). The sharp spike is followed by a gradual decrease (slow reactions) which terminate after approximately 50-60 ns when the CJ condition is attained. Based on experimental data, the total reaction zone length is estimated to be around 300 μm. Some experimental observations, such as the reaction zone width and the diameter effect, can be satisfactorily reproduced by numerical modelling, provided an appropriate reaction rate model is known. Here we describe the model for numerical modelling of the steady state detonation of NM. The model is based on the coupling thermochemical code EXPLO5 with the Wood-Kirkwood detonation theory, supplemented with different reaction rate models. The constants in the rate models are calibrated based on experimentally measured particle velocity profiles and the detonation reaction zone width. It was found that the model can describe the experimentally measured total reaction time (width of reaction zone) and the particle velocitytime profile of NM. It was found also that the reaction rate model plays a key role on the shape of the shock wave front. In addition, the model can predict the detonation parameters (D, pCJ, TCJ, VCJ, etc.) and the effect of charge diameter on the detonation parameters.
Rocznik
Strony
239--261
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Croatia
  • Energetics Research Institute, Nanyang Technological University, Singapore
  • OZM Research, s.r.o., 538 62 Hrochuv Tynec, Czech Republic
  • Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Croatia
Bibliografia
  • [1] Tarver, C.M.; Urtiew, P.A. Theory and Modeling of Liquid Explosive Detonation. J. Energ. Mater. 2010, 28: 299-317.
  • [2] Hardesty, D.R. An Investigation of the Shock Initiation of Liquid Nitromethane. Combust. Flame 1976, 27: 229-251.
  • [3] Menikoff, R.; Shaw, M.S. Modelling Detonation Waves in Nitromethane. Combust. Flame 2011, 158: 2549-2558.
  • [4] Mochalova, V.; Utkin, A.; Lapin, S. Detonation Properties of Nitromethane/Diethylenetriamine Solution. AIP Conf. Proc., 2017, 1973: 030005.
  • [5] Fickett, W.; Davis, W.C. Detonation: Theory and Experiment. Dover Publications Inc., Mineola/New York, 1979, p. 210.
  • [6] Suceska, M. Test Methods for Explosives. Springer-Verlag, New York, 1995, p. 235.
  • [7] Bouyer, V.; Sheffield, S.A.; Dattelbaum, D.M.; Gustavsen, R.L.; Stahl, D.B.; Coucet, M.; Decaris, L. Experimental Measurements of the Chemical Reaction Zone of Detonating Liquid Explosives. AIP Conf. Proc., 2009, 1195:177-180.
  • [8] Sheffield, S.A.; Engelke, R.; Alcon, R.R.; Gustavsen, R.L.; Robins, D.L.; Stacy, D.B.; Whitehead, M.C. Particle Velocity Measurements of the Reaction Zone in Nitromethane. Int. Detonation Symposium, Proc., 12th, Office of Naval Research, Arlington VA, 2002, 159-166.
  • [9] Pachman, J.; Künzel, M.; Nemec, O.; Majzlík, J. A Comparison of Methods for Detonation Pressure Measurement. Shock Waves 2018, 28: 217-225.
  • [10] Stimac, B.; Suceska, M.; Kunzel, M.; Stanković, S.; Kucera, J. Detonation Reaction Zone in Nitromethane: Experimental and Numerical Studies. Seminar New Trends Res. Energ. Mater., Proc., 22nd, Pardubice, Czech Republic, 2019, 216-228.
  • [11] Engelke, R.; Bdzil, J.B. A Study of the Steady‐state Reaction‐zone Structure of a Homogeneous and a Heterogeneous Explosive. Phys. Fluids 1983, 26:1958-1988.
  • [12] Bdzil, J.B.; Engelke, R.; Christenson, D.A. Kinetics Study of a Condensed Detonating Explosive. J. Chem. Phys. 1981, 74: 5694.
  • [13] Koldunov, S.A.; Ananin, V.A.; Garanin, V.A.; Sosikov, V.A.; Torunov, S.I. Detonation Characteristics of Diluted Liquid Explosives: Mixtures of Nitromethane with Methanol. Combust., Explos., Shock Waves 2010, 46: 64-69.
  • [14] Sugiyama, Y.; Wakabayashi, K.; Matsumura, T.; Nakayama, Y. Numerical Simulations of the Diameter Effect for Nitromethane Using Ignition and Growth Model. ICDERS, 25th, Leeds, UK, 2015.
  • [15] Partom, Y. Revisiting Shock Initiation Modeling of Homogeneous Explosives. J. Energ. Mater. 2013, 31: 127-142.
  • [16] Nunziato, J.W.; Kipp, M.E. Numerical Studies of Initiation, Detonation and Detonation Failure in Nitromethane. Sandia National Laboratory Report No. SAND81-0669, 1983.
  • [17] Suceska, M. EXPLO5 User’s Guide. OZM Research s.r.o., Hrochův Týnec, 2018.
  • [18] Suceska, M. Calculation of Detonation Parameters by EXPLO5 Computer Program. Mater. Sci. Forum 2004, 325-330.
  • [19] Wood, W.W.; Kirkwood, J. Diameter Effect in Condensed Explosives:the Relationship between Velocity and Radius of Curvature of the Detonation Wave. J. Chem. Phys. 1954, 22(11): 1920-1924.
  • [20] Kirby, I.J.; Leiper, G.A. A Small Divergent Detonation Theory for Intermolecular Explosives. Int. Detonation Symposium, Proc., 8th, Naval Surface Weapons Center, White Oak, Silver Spring, MD, 1985, 176-186.
  • [21] Esen, S.; Souers, P.C.; Vitello, P. Prediction of the Non-ideal Detonation Performance of Commercial Explosives using the DeNE and JWL++ Codes. Int. J. Numerical Methods in Engineering 2005, 64: 1889-1914.
  • [22] Fried, L.E.; Howard, W.M.; Souers, P.C. CHEETAH 2.0 User`s Manual. LLNL Report UCRL-MA-117541, 1998.
  • [23] Cooper, P.W. Explosives Engineering. New York, Wiley-WCH, Inc., 1996.
  • [24] Dobratz, B.M. LLNL Explosives Handbook. DE85-015961, 1981.
  • [25] Berman, H.A.; West, E.D. Heat Capacity of Liquid Nitromethane from 35 to 200 °C. J. Chem. Eng. Data 1969, 14: 107-109.
  • [26] Utkin, A.V.; Mochalova, V.M.; Garanin, V.A. Structure of Detonation Waves in Nitromethane and a Nitromethane/Methanol Mixture. Combust., Expl., Shock Waves 2012, 48(3): 350-355.
  • [27] Hobbs, M. L.; Bear, M. R. Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties. Int. Detonation Symposium, Proc., 10th, Office of Naval Research, Arlington VA, 1995, 409-418
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fee7e30c-aabe-4180-bc89-4f87557f3d03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.