Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We revise Krein’s extension theory of semi-bounded Hermitian operators by reducing the problem to finding all positive and contractive extensions of the “resolvent operator” (I + T)−1 of T. Our treatment is somewhat simpler and more natural than Krein’s original method which was based on the Krein transform (I−T)(I+T)−1. Apart from being positive and symmetric, we do not impose any further constraints on the operator T: neither its closedness nor the density of its domain is assumed. Moreover, our arguments remain valid in both real or complex Hilbert spaces.
Czasopismo
Rocznik
Tom
Strony
425--438
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- Corvinus University of Budapest, Department of Mathematics, IX. Fővám tér 13–15, Budapest H-1093, Hungary
- Eötvös Loránd University, Department of Applied Analysis and Computational Mathematics, Pázmány Péter sétány 1/c, Budapest H-1117, Hungary
autor
- Eötvös Loránd University, Department of Applied Analysis and Computational Mathematics, Pázmány Péter sétány 1/c, Budapest H-1117, Hungary
Bibliografia
- [1] W.N. Anderson, Shorted operators, SIAM J. Appl. Math. 20 (1971), 520–525.
- [2] W.N. Anderson, G.E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28 (1975), 60–71.
- [3] T. Ando, K. Nishio, Positive, selfadjoint extensions of positive symmetric operators, Tohoku Math. J. (2) 22 (1970), 65–75.
- [4] Y.M. Arlinski˘ı, E. Tsekanovski˘ı, M. Krein’s research on semi-bounded operators, its contemporary developments, and applications, Modern Analysis and Applications, [in:] Operator Theory: Advances and Applications, vol. 190, Birkhäuser, Basel, 2009, 65–112.
- [5] Y.M. Arlinski˘ı, S. Hassi, Z. Sebestyén, H.S.V. de Snoo, On the class of extremal etensions of a nonnegative operator, Recent Advances in Operator Theory and Related Topics, [in:] Operator Theory: Advances and Applications, vol. 127, Birkhäuser, Basel, 2001, 41–81.
- [6] G. Arsene, A. Gheondea, Completing matrix contractions, J. Operator Theory 7 (1982), 179–189.
- [7] T. Constantinescu, A. Gheondea, Notes on (the Birmak–Krein–Vishik theory on) selfadjoint extensions of semibounded symmetric operators, INCREST Preprint Series, July 1981, Bucharest, Romania; arXiv:1807.05363, 2018.
- [8] R.G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415.
- [9] H. Freudenthal, Über die Friedrichssche Fortsetzung halbbeschränkter Operatoren, Akademie van Wetenschappen te Amsterdam, Proceedings, ser. A., 39 (1936), 832–833.
- [10] K. Friedrichs, Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, Math. Ann. 109 (1934), 465–487.
- [11] A. Gheondea, An Indefinite Excursion in Operator Theory. Geometric and Spectral Treks in Krein Spaces, Cambridge University Press, Cambridge, 2022.
- [12] P.R. Halmos, Subnormal Operators and the Subdiscrete Topology, Anniversary Volume on Approximation Theory and Functional Analysis, Birkhäuser, Basel, 1984, 49–65.
- [13] S. Hassi, M. Malamud, H. de Snoo, On Krein’s extension theory of nonnegative operators, Math. Nachr. 274–275 (2004), no. 1, 40–73.
- [14] S. Hassi, A. Sandovici, H. de Snoo, H. Winkler, A general factorization approach to the extension theory of nonnegative operators and relations, J. Operator Theory 58 (2007), no. 2, 351–386.
- [15] M.G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications, I, Mat. Sbornik 62 (1947), 431–495 [in Russian].
- [16] J. von Neumann, Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann. 102 (1929), 49–131.
- [17] V. Prokaj, Z. Sebestyén, On Friedrichs extensions of operators, Acta Sci. Math. (Szeged) 62 (1996), 243–246.
- [18] V. Prokaj, Z. Sebestyén, On extremal positive operator extensions, Acta Sci. Math. (Szeged) 62 (1996), 485–492.
- [19] M. Reed, B. Simon, Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.
- [20] F. Riesz, B. Sz.-Nagy, Functional Analysis, Courier Corporation, 2012.
- [21] K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert space, Springer Science & Business Media, 2012.
- [22] Z. Sebestyén, On ranges of adjoint operators in Hilbert space, Acta Sci. Math. (Szeged) 46 (1983), 295–298.
- [23] Z. Sebestyén, Restrictions of positive operators, Acta Sci. Math. (Szeged) 46 (1983), 299–301.
- [24] Z. Sebestyén, J. Stochel, Restrictions of positive self-adjoint operators, Acta Sci. Math. (Szeged) 55 (1991), 149–154.
- [25] Z. Sebestyén, J. Stochel, Characterizations of positive selfadjoint extensions, Proc. Amer. Math. Soc. 135 (2007), 1389–1397.
- [26] Z. Sebestyén, Zs. Tarcsay, T∗T always has a positive selfadjoint extension, Acta Math. Hungar. 135 (2012), 116–129.
- [27] Z. Sebestyén, Zs. Tarcsay, On the Krein-von Neumann and Friedrichs extension of positive operators, Acta Wasaensia 462 (2021), 165–178.
- [28] Y.L. Shmulian, The operator integral of Hellinger, Amer. Math. Soc. Transl. 22 (1962), no. 2.
- [29] M.H. Stone, Linear Transformations in Hilbert Space, AMS Colloquium Publications, vol. 15, 1932.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fee3f245-496e-4d45-a740-9888d87f668e