PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Limitations of Short Basalt Fibers Use as an Effective Reinforcement of Polyethylene Composites in Rotational Molding Technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rotational molding technology is becoming more popular and even outstanding some of the conventional polymer processing technologies. The production of polymer composites via this technology is still not described thoroughly. This work discusses the possibilities of obtaining polyethylene composites reinforced with short basalt fibers. Two methods of incorporating the fibrous fillers, dry-blending and through preliminary extrusion, are concerned. The application of the extrusion step to mixed polymer matrix with basalt fiber results in better distribution of basalt fibers than the direct dry blending polymer powder with fiber in the mold. The basalt fibers from rotomolded samples prepared from melt mixed plastic powder significantly reduced their length, leading to a substantial limitation in their reinforcing effect on the polymer matrix. The possible reinforcing effect was evaluated in a mechanical test such as a tensile test, impact test, and hardness. Optical microscopy helped in the investigation of the distribution of basalt fibers. Not only the physical structure of composites was examined, but also the chemical composition using the Fourier transform infrared spectroscopy. The spectroscopic analysis confirms a properly realized technological process without degradation caused by rotational molding or additional melt blending. The production of good-quality rotomolded composites reinforced with basalt fibers depends on the method of incorporating the fibrous filler.
Twórcy
  • Institute of Materials Technology, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznań, Poland
  • Institute of Materials Technology, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznań, Poland
  • Institute of Materials Technology, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznań, Poland
Bibliografia
  • 1. Rao MA, Throne JL. Principles of rotational molding. Polymer Engineering and Science.1972;12(4):237–64.
  • 2. Crawford RJ, Throne JL. Rotational molding technology. New York. 2002. 327 p.
  • 3. Hamidi A, Farzaneh S, Nony F, Ortega Z, Khelladi S, Monzon M, et al. Modelling of sintering during rotational moulding of the thermoplastic polymers. International Journal of Material Forming. 2016;9(4):519–30.
  • 4. Ogila KO, Shao M, Yang W, Tan J. Rotational molding: A review of the models and materials. Express Polymer Letters. 2017;11(10):778–98.
  • 5. Głogowska K, Pączkowski P, Samujło B. Study on the Properties and Structure of Rotationally Moulded Linear Low-Density Polyethylene Filled with Quartz Flour. Materials. 2022;15(6):2154.
  • 6. Yan W, Lin RJT, Bhattacharyya D. Particulate reinforced rotationally moulded polyethylene composites – Mixing methods and mechanical properties. Composites Science and Technology. 2006;66(13):2080–8.
  • 7. Höfler G, Lin RJT, Jayaraman K. Rotational moulding and mechanical characterisation of halloysite reinforced polyethylenes. Journal of Polymer Research. 2018;25(6):132.
  • 8. Baumer MI, Leite JL, Becker D. Influence of calcium carbonate and slip agent addition on linear medium density polyethylene processed by rotational molding. Materials Research. 2013;17(1):130–7.
  • 9. Cisneros-López EO, Pérez-Fonseca AA, González- García Y, Ramírez-Arreola DE, González-Núñez R, Rodrigue D, et al. Polylactic acid-agave fiber biocomposites produced by rotational molding: A comparative study with compression molding. Advances in Polymer Technology. 2018;37(7):2528–40.
  • 10. Aniśko J, Barczewski M, Piasecki A, Skórczewska K, Szulc J, Szostak M. The Relationship between a Rotational Molding Processing Procedure and the Structure and Properties of Biobased Polyethylene Composites Filled with Expanded Vermiculite. Materials. 2022;15(17):5903.
  • 11. Barczewski M, Szostak M, Nowak D, Piasecki A. Effect of wood flour addition and modification of its surface on the properties of rotationally molded polypropylene composites. Polimery. 2018;63(11/12):772–84.
  • 12. Głogowska K, Majewski Ł, Gajdoš I, Mitaľ G. Assessment of the Resistance to External Factors of Low-Density Polyethylene Modified with Natural Fillers. Advances in Science and Technology Research Journal. 2017;11(4):35–40.
  • 13. Andrzejewski J, Krawczak A, Wesoły K, Szostak M. Rotational molding of biocomposites with addition of buckwheat husk filler. Structure-property correlation assessment for materials based on polyethylene (PE) and poly(lactic acid) PLA. Composites Part B: Engineering. 2020;202(May).
  • 14. Ortega Z, Romero F, Paz R, Suárez L, Benítez AN, Marrero MD. Valorization of invasive plants from macaronesia as filler materials in the production of natural fiber composites by rotational molding. Polymers. 2021;13(13).
  • 15. Suárez L, Ortega Z, Romero F, Paz R, Marrero MD. Influence of Giant Reed Fibers on Mechanical, Thermal, and Disintegration Behavior of Rotomolded PLA and PE Composites. Journal of Polymers and the Environment. 2022;
  • 16. Ghanem Z, Šourkova HJ, Sezemsky J, Špatenka P. The Effect of Plasma Treatment of Polyethylene Powder and Glass Fibers on Selected Properties of Their Composites Prepared via Rotational Molding. Polymers. 2022;14(13):2592.
  • 17. Szostak M, Tomaszewska N, Kozlowski R. Mechanical and Thermal Properties of Rotational Molded PE/Flax and PE/Hemp Composites. In 2019. p. 495–506.
  • 18. Abhilash SS, Singaravelu DL. Effect of Fiber Content on Mechanical and Morphological Properties of Bamboo Fiber-Reinforced Linear Low-Density Polyethylene Processed by Rotational Molding. Transactions of the Indian Institute of Metals. 2020;73(6):1549–54.
  • 19. Hanana FE, Rodrigue D. Rotational molding of self-hybrid composites based on linear low-density polyethylene and maple fibers. Polymer Composites. 2018;39(11):4094–103.
  • 20. Ortega Z, Monzón MD, Benítez AN, Kearns M, McCourt M, Hornsby PR. Banana and Abaca Fiber-Reinforced Plastic Composites Obtained by Rotational Molding Process. Materials and Manufacturing Processes. 2013;130614085148001.
  • 21. Szostak M, Tomaszewska N, Kozlowski R. Mechanical and Thermal Properties of Rotational Molded PE/Flax and PE/Hemp Composites. In 2019. p. 495–506.
  • 22. Abhilash SS, Singaravelu DL. Effect of Fiber Content on Mechanical and Morphological Properties of Bamboo Fiber-Reinforced Linear Low-Density Polyethylene Processed by Rotational Molding. Transactions of the Indian Institute of Metals. 2020;73(6):1549–54.
  • 23. López-Bañuelos RH, Moscoso FJ, Ortega-Gudiño P, Mendizabal E, Rodrigue D, González-Núñez R. Rotational molding of polyethylene composites based on agave fibers. Polymer Engineering & Science. 2012;52(12):2489–97.
  • 24. Yew GH, Mohd Yusof AM, Mohd Ishak ZA, Ishiaku US. Water absorption and enzymatic degradation 123 Advances in Science and Technology Research Journal 2023, 17(3), 110–123 of poly(lactic acid)/rice starch composites. Polymer Degradation and Stability. 2005;90(3):488–500.
  • 25. Wang B, Panigrahi S, Tabil L, Crerar W. Pre-treatment of Flax Fibers for use in Rotationally Molded Biocomposites. Journal of Reinforced Plastics and Composites. 2007;26(5):447–63.
  • 26. Kufel A, Kuciel S. Hybrid Composites Based on Polypropylene with Basalt/Hazelnut Shell Fillers: The Influence of Temperature, Thermal Aging, and Water Absorption on Mechanical Properties. Polymers. 2019;12(1):18.
  • 27. Robledo-Ortíz JR, González-López ME, Rodrigue D, Gutiérrez-Ruiz JF, Prezas-Lara F, Pérez-Fonseca AA. Improving the compatibility and mechanical properties of natural fibers/green polyethylene biocomposites produced by rotational molding. Journal of Polymers and the Environment. 2020; 28(3): 1040–9.
  • 28. Stagnaro P, Utzeri R, Vignali A, Falcone G, Iannace S, Bertini F. Lightweight polyethylene-hollow glass microspheres composites for rotational molding technology. Journal of Applied Polymer Science. 2021;138(5):1–16.
  • 29. Castellanos D, Martin PJ, Butterfield J, McCourt M, Kearns M, Cassidy P. Sintering and Densification of Fibre Reinforcement in Polymers during Rotational Moulding. Procedia Manufacturing. 2020;47:980–6.
  • 30. Yuan X, Easteal AJ, Bhattacharyya D. Mechanical performance of rotomoulded wollastonitereinforced polyethylene composites. International Journal of Modern Physics B. 2007;21(7):1059–66.
  • 31. de Andrade Coutinho PL, Morita AT, Cassinelli LF, Morschbacker A, Werneck Do Carmo R. Braskem’s Ethanol to Polyethylene Process Development. Catalytic Process Development for Renewable Materials. 2013;149–65.
  • 32. Mendieta CM, Vallejos ME, Felissia FE, Chinga-Carrasco G, Area MC. Review: Bio-polyethylene from Wood Wastes. Journal of Polymers and the Environment. 2020;28(1):1–16.
  • 33. Brito GF, Agrawal P, Araújo EM, Mélo TJA De. Polylactide / Biopolyethylene Bioblends. 2012;22:427–9.
  • 34. Jyoti J, Singh BP, Arya AK, Dhakate SR. Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Advances. 2016;6(5):3997–4006.
  • 35. Barczewski M, Mysiukiewicz O, Andrzejewski J, Matykiewicz D, Medycki D, Kloziński A, et al. Thermo-mechanical and mechanical behavior of hybrid isotactic polypropylene glass fiber reinforced composites (GFRC) modified with calcium carbonate (CaCO3). Polymer Engineering and Science. 2020;60(7):1588–603.
  • 36. Brostow W, Hagg Lobland HE, Narkis M. Sliding wear, viscoelasticity, and brittleness of polymers. Journal of Materials Research. 2006;21(9):2422–8.
  • 37. Hejna A, Barczewski M, Andrzejewski J, Kosmela P, Piasecki A, Szostak M, et al. Rotational molding of linear low-density polyethylene composites filled with wheat bran. Polymers. 2020;12(5).
  • 38. Matykiewicz D, Barczewski M. On the impact of flax fibers as an internal layer on the properties of basalt-epoxy composites modified with silanized basalt powder. Composites Communications. 2020;20:100360.
  • 39. Deák T, Czigány T. Chemical Composition and Mechanical Properties of Basalt and Glass Fibers: A Comparison. Textile Research Journal. 2009;79(7):645–51.
  • 40. Almond J, Sugumaar P, Wenzel MN, Hill G, Wallis C. Determination of the carbonyl index of polyeth- ylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. E-Polymers. 2020;20(1):369–81.
  • 41. Olinek J, Anand C, Bellehumeur CT. Experimental study on the flow and deposition of powder particles in rotational molding. Polymer Engineering & Science. 2005;45(1):62–73.
  • 42. Duran J, Behringer RP. Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials. Vol. 54, Physics Today. 2001. 63 p.
  • 43. Khanam PN, AlMaadeed MAA. Processing and characterization of polyethylene-based composites. Advanced Manufacturing: Polymer and Composites Science. 2015;1(2):63–79.
  • 44. Huang R, Xu X, Lee S, Zhang Y, Kim BJ, Wu Q. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance. Materials. 2013;6(9):4122–38.
  • 45. Khanna YP, Turi EA, Taylor TJ, Vickroy V V., Abbott RF. Dynamic mechanical relaxations in polyethylene. Macromolecules. 1985;18(6):1302–9.
  • 46. Barczewski M, Hejna A, Kosmela P, Mysiukiewicz O, Piasecki A, Sałasińska K. High-density polyethylene – expanded perlite composites: structural oriented analysis of mechanical and thermomechanical properties. Materiale Plastice. 2022;59(3):52–63.
  • 47. Mazur K, Jakubowska P, Romańska P, Kuciel S. Green high density polyethylene (HDPE) reinforced with basalt fiber and agricultural fillers for technical applications. Composites Part B: Engineering. 2020;202(July).
  • 48. Gupta N, Ramkumar PL, Sangani V. An approach toward augmenting materials, additives, processability and parameterization in rotational molding: a review. Materials and Manufacturing Processes. 2020;35(14):1539–56
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fee11eac-d3a3-41a4-8f77-538b1bc46017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.